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ABSTRACT 

 

Evolutionary traps arise when organisms use novel, low-quality or even lethal 

resources based on previously reliable cues. Persistence of such maladaptive 

interactions depends not only on how individuals locate important resources, such as 

host plants, but also the mechanisms underlying poor performance. Pieris 

macdunnoughii (Remington) (Lepidoptera: Pieridae) lays eggs on a non-native mustard, 

Thlaspi arvense (L.) (Brassicaceae), which is lethal to its larvae. However, in the 150 

years since T. arvense invaded this butterfly continues to recognize and oviposit on the 

invasive mustard. 

I evaluated two possible constraints on the evolution of decreased preference 

within an invaded population. First, an evolutionary response to selection may be 

constrained by low heritable genetic variation for preference. Second, evolutionary 

traps are expected to persist when overlapping cue sets (cue similarity) link decreased 

preference for the novel, unsuitable plant with decreased preference for the historical, 

high-quality resources. I determined that while preference for the nonnative host over 

the native host is heritable, sex-linked, and varies considerably in the population, it is 

unlikely that this preference is correlated with preference for native hosts with similar 

defensive chemical profiles. Thus, neither a lack of heritable genetic variation nor an 

increased risk of excluding good host plants when avoiding T. arvense are likely to be 

constraining escape from this evolutionary trap. Instead, our results suggest behavioral 



www.manaraa.com

 

vi 

plasticity may buffer populations from innate preference for the lethal host. 

 Finally, I tested the mechanisms underlying poor performance of neonate larvae 

on the novel host. Larvae were less likely to start eating T. arvense and starvation was a 

primary cause of mortality, indicating a pre-ingestive feeding deterrent. A primary 

oviposition stimulant, the glucosinolate sinigrin, increased this deterrent effect and 

mortality when added to T. arvense and native host plant leaves. Pre-ingestive 

deterrents, even those familiar to herbivorous insects, may significantly contribute to 

the persistence of evolutionary traps. 
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CHAPTER I: 

INTRODUCTION 

 

1.1 Local (mal)adaptation 

Local adaptation occurs when populations evolve in response to selection 

pressures that vary over small geographic scales (Hendry and Gonzalez 2008; 

Richardson et al. 2014; Tiffin and Ross-Ibarra 2014). The concept was first introduced 

by Turesson (1922) in his research on ‘ecotypes’, describing consistent heritable 

differences in form found among Swedish plant populations inhabiting irregular 

landscapes. The concept was quickly adopted (Gregor 1944; Turrill 1946) and it is now 

known that ecotypes and the local adaptation process are common (Hoeksema and 

Forde 2008; Hereford 2009).  Locally adapted populations have higher fitness at their 

native site than members of other populations introduced to that site, and often have 

lower fitness when moved out of their native habitat (Savolainen et al. 2013). This 

antagonistic effect is not universal, but fitness outside of the native habitat is often 

negatively correlated with the degree of local adaptation (Hereford 2009), supporting 

the hypothesis that the process of specialization, even at large scales, represents a 

fitness trade-off (Hardy and Otto 2014; Vamosi et al. 2014).  

Is local adaptation the norm? In his early work, Turesson surmised that all 

populations experiencing different selection pressures should be optimally adapted to 

their native sites (Turesson 1922). This is not the case. Maladaptation to the local 
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environment persists in many natural populations, but the reasons why are poorly 

understood (Crespi 2000; Thompson et al. 2002; Hansen et al. 2006; Hendry and 

Gonzalez 2008; Hereford 2009; Anderson and Geber 2010; Fraser 2014). Populations 

are expected to fall short of optimal fitness peaks due to developmental variance and 

environmental stochasticity. However, if populations continue to express average 

fitness values well below the expected optima, it is likely that one or more of the 

conditions for local adaptation are not being met.  

The potential for local (mal)adaptation depends on heterogeneous selection 

pressures across a landscape. Environmental variation does not inevitably lead to 

differences in selection, and traits or behaviors that appear costly to a fitness 

component may not always lead to a decline in overall fitness. Mosaics of selection 

interact with other evolutionary forces and genetic factors to produce differentiation, 

with the relative strength of selection affecting the importance of these interactions 

(Blanquart et al. 2013). Local maladaptation may therefore persist under conditions of 

low heritable genetic variation in traits under selection, balancing selection imposed by 

other fitness costs, gene flow between areas with different selection regimes, and 

temporal and spatial fluctuations in the strength of selection.  

Populations may lack variation if the adaptive trait arises from a rare mutation 

and past drift, inbreeding or directional selection may have culled polymorphisms from 

the gene pool. The genetic basis for a trait and its mode of inheritance both control the 

rate at which beneficial alleles can increase in frequency in a population, or whether 

they can at all (Hoeksema and Forde 2008; Yeaman and Whitlock 2011; Savolainen et 

al. 2013). Pleiotropic genes that have effects on multiple traits may be under stabilizing 



www.manaraa.com

 

3 

selection from unknown forces. Linkage disequilibrium, dominance and whether a trait 

is autosomal or sex-linked also affect how quickly allele frequency changes can be 

observed in a population (Akerman and Buerger 2014; Tiffin and Ross-Ibarra 2014).  

Unlike selection and drift, random gene flow is generally a homogenizing 

evolutionary force, decreasing genetic variation between populations. When both 

selection and migration occur in one of the populations, selection must be above a 

threshold set by the rate of gene flow in order to overcome this homogenizing effect 

(Wright 1931). Due to the importance of this equilibrium, many ecologists and 

population geneticists have focused on genetic isolation as a facilitator of local 

adaptation, using distance and time as proxies (Ehrlich and Raven 1969). Recent 

evidence suggests local adaptation can occur on much finer geographic and temporal 

scales in response to patchy selection pressures (Richardson et al. 2014; Tiffin and 

Ross-Ibarra 2014). For example, local adaptation of salamanders has occurred in ponds 

several hundred meters apart in response to intense selection by predation pressures that 

differ between ponds (Richardson and Urban 2013). Over the course of several decades, 

populations of Edith’s Checkerspot (Euphydryas editha) evolved host plant preferences 

dependent on an invasive plant and human land use practices (which proved disastrous 

for the populations when human disturbance recently ended; Singer et al. 1993; Singer 

and Parmesan 2018). Even the hawkweeds Turesson (1922) was studying when 

developing the ecotype concept demonstrated local adaptation to immediately adjacent 

habitats. Although differentiation is dependent on some level of genetic isolation, it is 

possible that the geographic and temporal scales necessary to produce these differences 

are smaller and potentially shorter than once thought. The assumptions that too short a 
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time has passed since the introduction of a novel selection pressure or too little distance 

exists between areas of different selection are not convincing explanations for persistent 

maladaptation.  

 

1.2 Evolutionary traps 

The scale of and constraints leading to maladaptation are especially important in 

the context of rapid environmental change. For species that are highly dependent on 

specialized recognition systems, anthropogenic changes to the environment (e.g. 

introduction of nonnative species, urbanization, modification of habitats, changes in 

land use patterns, climate change, etc.) can lead to preference/performance mismatches 

known as evolutionary traps (Schlaepfer et al. 2002, 2005; Robertson et al. 2013). 

Evolutionary traps occur when environmental change causes previously advantageous 

evolved cue-responses to become unreliable, and changes in the cue-response outcome 

(e.g. preferring low-quality resources, changing (or failing to change) the timing of life 

history events, misidentifying risks) have measurable fitness costs (Sih et al. 2011; 

Robertson et al. 2013).  

Evolutionary traps are not ecological dead-ends, and the potential may exist for 

escape via rapid local adaptation to novel selection pressures (Carroll 2007a; Keeler 

and Chew 2008; Harvey et al. 2010). Interestingly, most of the theoretical and empirical 

literature focuses on the formation of (Schlaepfer et al. 2005; Sih et al. 2011; Sih 2013) 

or evolutionary escape from (Carroll et al. 2007; Keeler and Chew 2008; Hendry et al. 

2011; Lankau et al. 2011) these traps, and not the processes involved in the 

maintenance of traps over long periods of time. However, some species encountering 
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these preference/performance mismatches show no sign of escape and remain 

maladapted to changes in the local environment.  

 

1.2.1 Types of traps 

Most evolutionary traps can be categorized as resource-based. These involve 

maladaptive recognition and attempted exploitation of a novel resource (Robertson et 

al. 2013), whether that resource is food, mates, habitat, etc. Organisms can also be 

susceptible to risk-response (or disturbance-response) traps, resulting in excessively 

cautious (e.g. flight responses to harmless ecotourists; Beale 2007; Tablado and Jenni 

2017) or hazardously naïve (e.g. failure to detect predator odor cues; Brown et al. 2018) 

responses to novel potential risks. The final major category is phenological traps. These 

evolutionary traps involve mismatches in the cue-response systems that mediate life-

history decisions, such as entering or exiting diapause (wall brown butterfly; Dyck et al. 

2015), onset of reproduction (great tits; Schaper et al. 2011), dispersal (Massot et al. 

2008) or migration (Visser et al. 2010). The distinction among these trap types is 

important because the strength of the cue-response, the distribution of selection 

pressures (continuous or patchy across a landscape) and the potential escape trajectories 

are likely to differ considerably both within and between the three. Here and in the 

following chapters I focus on a resource-based trap, specifically egg-laying on a lethal 

invasive plant by a native arthropod, as a case study for persistent maladaptation.  
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1.2.2 Resource-based traps: escape trajectories 

Long before these mismatches were ever called traps, ecologists observed 

apparently maladaptive responses to environmental change and determined two main 

trajectories for escape, either by decreased preference for or improved exploitation of 

novel resources (Chew 1975, 1977; Wiklund 1975; Schlaepfer et al. 2002). Increased 

avoidance has evolved in response to invasive prey or hosts. For example, multiple 

endemic Australian species of snakes now tend to avoid invasive, toxic cane toads 

(Rhinella marina; Phillips and Shine 2006; Phillips et al. 2010). Decreased preference 

can be achieved by narrowing the range of positive cues involved in recognizing a 

resource, by expanding the range of negative cues, or a combination of the two. It is 

unclear which of these two cue-recognition shifts are more likely, and the relative 

importance of stimulants and deterrents, and their sensitivity to selection from 

maladaptive resource use have not been addressed in the evolutionary trap literature. 

Robertson and Chalfoun (2016) have pointed out that that it is also unclear whether 

evolutionary traps are more likely to arise as a result of the incapacity of existing 

sensory organs to detect novel cues, or inflexibility of processing algorithms once this 

information has reached the brain. Understanding of the cognitive basis of evolutionary 

traps will improve our ability to predict whether and when escape via decreased 

preference may be possible.  

Increased exploitation is better documented, especially among herbivorous 

arthropods: the red-shouldered soapberry bug’s (Jadera haematoloma) have adopted 

invasive golden train trees has suitable hosts after initial poor performance on the novel 

host (Carroll 2007b). Over the course of twenty years, a population of mustard white 
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butterflies (Pieris oleracea) improved performance (development time and pupal 

weight) on invasive garlic mustard (Alliaria petiolata) to the extent that some families 

showed little difference in either development time or pupal mass on the native and 

nonnative diets (Courant et al. 1994; Keeler and Chew 2008; Steward, Acuna, Mei, 

Casagrande and Chew, unpubl.). Although not commonly characterized as evolutionary 

traps, among the best examples of escape via improved exploitation are rapid 

adaptation to pesticides. The application of pesticides and insecticides degrade the 

quality of a previously beneficial resource without changing the attractiveness of the 

cue-set, forming an evolutionary trap. There are countless examples of target insects 

evolving resistance to insecticidal compounds, both from standing genetic variation and 

de novo mutations (Hawkins et al. 2019) 

For organisms using abiotic resources, the increased exploitation is usually not 

an option. Larval aquatic insects cannot develop on solar panels or asphalt roads no 

matter how attracted their mothers are to the polarized light reflected from these 

surfaces (Szaz et al. 2015; Robertson and Horváth 2019). Escape by this trajectory is 

not only limited by the potential of the resource, but also the current variance in fitness 

exhibited by organisms attempting to exploit that resource. If fitness is effectively zero, 

and there is no phenotypic variation, increased exploitation is an unlikely escape. This 

is especially true if the response is expected to depend largely on standing, rather than 

novel genetic variation.  
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1.2.3 Resource-based traps: escape mechanisms 

Whether the trajectory is decreased preference or increased exploitation, there 

are at least two mechanisms that can facilitate escape: phenotypic plasticity and rapid 

evolution in response to selection. Plasticity is commonly defined as the capacity for a 

single genotype to produce more than one phenotype, whether from a continuous or 

discontinuous suite of phenotypes, in response to environmental variation (West-

Eberhard 2003 p. 33)and can be generalized to describe all environmentally-mediated 

phenotypic variation (West-Eberhard 2003 p. 35; DeWitt and Scheiner 2004 p. 2). 

Because within-generational phenotypic plasticity can operate at the individual level, it 

has the potential to provide the most rapid relief from maladaptive responses to rapid 

environmental change (Fox et al. 2019), and might even mean that effects of rapid 

environmental change are not detected at the population level (Berthon 2015). Inter- 

and transgenerational plasticity can also generate rapid responses to evolutionary traps, 

where parental or grandparental experiences result in nongenetic changes in preference 

or performance phenotypes (O’Dea et al. 2016).  Plasticity contributes to escape by 

buffering populations against evolutionary traps, maintaining population size or genetic 

variation that could be eliminated under strong selection from the trap increasing the 

opportunity for an evolved response that may take longer to manifest (Strauss et al. 

2006). For example, the European parasitoid wasp Trissolcus cultratus prefers invasive 

brown marmorated stinkbugs to native hosts but develops poorly in the eggs of these 

hosts. Recent evidence suggests trophic plasticity allows T. cultratus larvae to 

hyperparasitize nonnative parasitoid larvae developing in the same stinkbug egg, 
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reducing the fitness costs associated with using this nonnative host insect (Abram et al. 

2014; Konopka et al. 2016).   

Without future evolutionary change, or decrease in trap prevalence, dependence 

on phenotypic plasticity is unlikely to be sufficient for organisms such as T. cultratus to 

cope with prolonged maladaptive resource use (Sih et al. 2011). Many organisms have 

demonstrated the capacity for rapid adaptive evolution in response to environmental 

change. This is especially evident in rapid shifts of both nonnative insects to use native 

plants as hosts, and of native insects expanding or switching their diets onto nonnative 

plants (Pearse and Hipp 2009; Pearse and Altermatt 2013). Although cultivated and 

feral alfalfa was originally identified as a poor host for the Melissa blue butterflies 

(Lycaeides melissa), recent evidence demonstrated that alfalfa-associated populations 

not only prefer the novel host (Forister et al. 2013), but that there are genomic 

signatures of differential host use in these populations compared to those that still use 

the native host (Chaturvedi et al. 2018). Even more compelling, it appears that these 

geographically distinct populations exhibited at least weak signs of parallel evolution of 

host-associated traits. This emphasizes the importance of considering organisms’ 

evolutionary history and historical resource when considering whether escape via rapid 

adaptation is possible (Strauss et al. 2006; Sih et al. 2011).  Both phenotypic plasticity 

and rapid adaptation operate against a background of potential constraints. These 

include existing capacity for plasticity, genetic variation within affected populations, 

the temporal and spatial strength of selection, gene flow from naïve populations, and 

conflicting costs associated with shifts in either preference or performance on the novel 

host. 
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1.3 Persistent maladaptation: an evolutionary trap case study 

Despite multiple trajectories and mechanisms for escape, maladaptive 

evolutionary traps appear to persist. In the following chapters I focus on the preference 

and performance of a native consumer stuck in an evolutionary trap with a nonnative 

resource. I evaluate the role of both genetic variation and heritability of preference, and 

the potential costs of a shift in preference as potential constraints on escape from this 

trap. Finally, I take a closer look at performance on the nonnative resource.  

 

1.3.1 The Pieris macdunnoughii – Thlaspi arvense trap 

The butterfly Pieris macdunnoughii is native to the southern Rocky Mountains. 

Like many insect herbivores, especially among the Lepidoptera, P. macdunnoughii has 

evolved a chemical cue- response system to identify suitable host plants on which to lay 

their eggs (Ehrlich and Raven 1964; Williams and Bowers 1987; Bernays and Graham 

1988). Typical of the Pieris napi species complex and of many other butterflies in the 

Pierineae, P. macdunnoughii lays eggs preferentially on plants in the family 

Brassicaceae (Chew 1977; Edger et al. 2015). Discrimination between host plants is 

based on the presence of glucosinolate (GSL) stimulants, a group of sulfur-containing 

glycosides, and in some part cardenolide deterrents (Huang and Renwick 1993, 1994; 

Huang et al. 1994; Du et al. 1995; Städler et al. 1995; Appendix A).  

This specialized cue-response system has recently been compromised in some 

populations of P. macdunnoughii by the invasion of Eurasian mustard Thlaspi arvense. 

T. arvense was first reported in the Gunnison basin of the southern Rockies in the 1880s 
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(cf. Chew 1977). The plant forms dense populations in disturbed, well-drained habitats. 

Due to recreational, agricultural and developmental land use patterns, the abundance of 

T. arvense at a site can be stable, although the distribution over a small geographic scale 

might be highly variable.  

In the early 1970s, (Chew 1975, 1977) observed that P. macdunnoughii females 

lay eggs on several invasive mustards, including T. arvense. At the time, Chew also 

demonstrated this plant was not suitable for larval development, leading to the death – 

usually in the early stages of development – of all offspring laid on the plant as a result 

of unknown defenses plant to which the butterflies are naïve. It seems likely that, under 

the right conditions, the costs of ovipositing on this plant might select for 

counteradaptation to the novel plant, either by increased avoidance during egg-laying or 

improved larval survival and growth (Chew 1977). However, in the forty years since 

the interaction was first described, at least one population of P. macdunnoughii exposed 

to T. arvense has shown no evidence of local adaptation, in either adult oviposition 

preference or larval performance (Nakajima et al. 2013). Based on the abundance and 

distribution of T. arvense at this site, measures of patch occupancy and egg distribution 

by P. macdunnoughii butterflies, and relative larval mortality estimates on the available 

invasive and native host plants, the fitness consequences of the acceptance behavior are 

estimated to be about 3% (Nakajima et al. 2013). This selection pressure should be 

strong enough to have an effect on trait frequencies, given other conditions for local 

adaptation are met (Tiffin and Ross-Ibarra 2014).  

This system is well-suited for testing persistence of maladaptation. The general 

timeframe of the invasion is known, and we have access to historical data 
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characterizing the interaction between the butterfly and the host plant in the 1970s 

(Chew 1977). Estimates of the potential fitness costs are significant, although expected 

to be specific to the abundance and distribution of T. arvense and host plant foraging 

strategies of the butterflies each generation (Nakajima et al. 2013). Finally, these 

butterflies currently only have one viable trajectory for evolutionary escape. Although 

some larvae may live longer than others on a diet of T. arvense, none survive to 

pupation or the adult reproductive stage, so any variation in larval growth that currently 

exists in the population is neither heritable (which is not to say it does not have a 

genetic basis) nor accessible to selection, as long as this variation is unlinked to 

performance on native hosts. Instead, all potential for an adaptive response lies with 

egg-laying behavior.  

 

1.3.2 Constraints on escape 

In chapter II, I evaluate the presence of heritable variation in T. arvense 

preference in invaded populations. In addition to selection pressure, an adaptive 

response to a novel herbivore-plant interaction requires heritable genetic variation 

(Hoffmann and Merilä 1999; Strauss et al. 2006). While butterflies from invaded 

populations show a wide range of preferences, from completely accepting to completely 

rejecting the novel host, the degree to which this represented a robust, heritable 

phenotype is unknown. In the presence of both selection and heritable variation, the rate 

of evolution will depend on the strength and consistency of selection, the degree of 

heritability and the genetic architecture of the selected trait. For example, the frequency 

of fully or partially recessive alleles of sex-linked genes evolves faster than similar 
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alleles of genes located on autosomes (Charlesworth et al. 1987, 2018; Irwin 2018), 

because the effects of these recessive alleles are not masked in the heterogametic sex 

(Mank 2009; Irwin 2018).  Additionally, ecological novelty in the form of nonnative, 

maladaptive host plants can affect the genetic basis for and variance of preference or 

performance traits (Kawecki 1995; Carroll et al. 2003). New cue sets may reveal 

previously neutral genetic variation (Hoffmann and Merilä 1999). We found that 

preference for whole plants and cut stems is heritable and sex-linked, but that these 

patterns are not upheld when butterflies are tested on plant chemical extracts.  

Chapter III tests a second potential constraint on escape from the T. arvense 

trap: cue similarity. Cue similarity can constrain adaptive responses to evolutionary 

traps when overlapping cue sets link decreased preference for novel resources with 

decreased preference for historical or native resources. While cue sets involved in 

mistakenly selecting low-quality novel resources are expected to resemble those of 

historical resources – this is, after all, the basis of an evolutionary trap – they can vary 

in the strength of that resemblance (Sih et al. 2011; Robertson et al. 2013). A large 

overlap in the composition or intensity of cue sets may mean that narrowing or refining 

the recognition system causes individuals to reject high-quality resources, transitioning 

the maladaptive response from mistake to miss (Fox and Lalonde 1993; Macmillan and 

Creelman 2004). Fitness costs of rejecting good resources (misses) may outweigh those 

of using T. arvense (mistakes), thereby maintaining the maladaptive behavior in P. 

macdunnoughii populations (Fox and Lalonde 1993; Robertson et al. 2013). We found, 

however, that preference is uncorrelated between T. arvense and the high-quality host 

plant that shares several of the same GSL cues. Instead, experience with the native host 
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significantly decreased preference for T. arvense, suggesting behavioral plasticity may 

mitigate selection pressures from this evolutionary trap.  

 

1.3.3 Neonate larval mortality on a novel host 

Finally, Chapter IV takes a closer look at the performance of neonate larvae on 

T. arvense to evaluate whether the negative consequences of feeding on the nonnative 

mustard are due primarily to pre-ingestive deterrents, or to a combination of factors that 

influence larvae once they have already started eating. P. macdunnoughii larvae 

demonstrate extreme neonate mortality on a T. arvense diet (Nakajima et al. 2013). 

However, later instars moved from native hosts on to the nonnative develop to pupation 

without a problem, and neonates rescued from T. arvense and moved to native hosts 

also develop successfully (Chew 1975). Whereas toxins are effective on naïve insects, 

deterrent responses require both the sensory anatomy and neural processing algorithms 

to identify and avoid a food source. It is unlikely that insects will demonstrate deterrent 

responses to entirely novel cues. Thus, the presence of a deterrent response suggests the 

responsible cue is one with which the insect has a shared evolutionary history. In host 

plant-based evolutionary traps escape through shifts in larval performance is possible 

but depends on the complexity of plant defenses. Unless susceptibility to active 

deterrents and toxins is genetically correlated, a combination of defenses that target 

both physiology and behavior could keep populations from evolving resistance to the 

evolutionary trap (Gould 1984; Bernays and Chapman 1987; Berenbaum and Zangerl 

1992).  
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CHAPTER II: 

NOVEL PLANT UNMASKS HERITABLE VARIATION IN HOST 

PREFERENCE WITHIN AN INSECT POPULATION1 

 

  

                                                 
1 Steward, RA, Epanchin-Niell, RS, Boggs, CL. To be submitted to Evolution.  
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2.1 Introduction 

For native herbivores, novel plant communities formed by the introduction of 

nonnative species represent both more complex and less reliable resource environments 

(Robertson et al. 2013). While native herbivores may fail to recognize non-native 

plants, or sometimes easily incorporate the nonnatives into their diets, in many cases 

native herbivores recognize a nonnative plant as a resource, despite not being able to 

successfully exploit it (Gripenberg et al. 2010; Pearse et al. 2013). Fitness costs 

associated with consistently using an unsuitable resource are expected to select against 

preference for the novel host or for improved physiological performance when feeding 

(Wiklund 1975; Schlaepfer et al. 2005; Strauss et al. 2006; Pearse et al. 2013).   

In addition to selection pressure, an adaptive response to a novel herbivore-plant 

interaction also requires heritable genetic variation for either preference or performance 

of herbivores (Hoffmann and Merilä 1999; Strauss et al. 2006). In the presence of both 

selection and heritable variation, the rate of evolution will depend on the strength and 

consistency of selection, the degree of heritability and the genetic architecture of the 

selected trait. For example, the frequency of fully or partially recessive alleles of sex-

linked genes evolves faster than similar alleles of genes located on autosomes 

(Charlesworth et al. 1987, 2018; Irwin 2018), because the effects of these recessive 

alleles are not masked in the heterogametic sex (Mank 2009; Irwin 2018).  Additionally, 

ecological novelty in the form of nonnative, maladaptive host plants can affect the 

genetic basis for and variance of preference or performance traits (Kawecki 1995; 

Carroll et al. 2003). New cue sets may reveal previously neutral genetic variation 

(Hoffmann and Merilä 1999). It is not clear however, how heritability of preference for 
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novel host plants may differ from heritability of preference for historical native hosts, 

and how this in turn may promote or constrain adaptive responses to novel hosts. 

Lepidoptera, specifically butterflies, are particularly susceptible to maladaptive 

use of novel plants (Yoon and Read 2016; Singer and Parmesan 2018). Most butterfly 

species have very specialized diets, feeding on plants from no more than three families 

(Forister et al. 2015). Although individual variation in host plant preference is 

determined by many factors, the number (range) and preferred order (ranking) of plants 

used as hosts depend largely on evolved recognition systems to identify and evaluate 

host plant chemistry and quality (Thompson and Pellmyr 1991; Singer 2003). Rapid 

shifts in both host range and ranking have occurred in response to the introduction of 

novel plants (Keeler and Chew 2008; Singer and McBride 2010; Forister et al. 2013). 

Oviposition preference is an effective system in which to ask questions about how the 

structure of heritable genetic variation affects adaptive response to novel hosts.  

A considerable body of work exists describing the heritability of oviposition 

preference between species of butterflies, within species between populations, and 

within populations that prefer different host plants.  Oviposition preference traits tend 

to be sex-linked between species and geographically distant populations (Thompson 

1988a; Scriber et al. 1991; Sperling 1994; Janz 1998, 2003; Nygren et al. 2006; 

Chaturvedi et al. 2018); but see Sheck and Gould 1995; Forister 2005; Hora et al. 

2005). Females are the heterogametic sex, having both Z (= X) and W (= Y) 

chromosomes, while males are homogametic ZZ (Robinson 1971 in Sperling 1994). 

Host plant preference of interspecific or inter-populational hybrid females resembles 

that of their paternal grandmother. This pattern has been linked to the existence of 
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stable host ranks in most populations, where the order in which females tend to prefer 

plants is based on intrinsic characteristics of the plant, such as secondary chemistry or 

nutritional quality (Janz 1998, 2003; Bossart and Scriber 1999).  

Oviposition variation within populations has been attributed to individual 

differences in specificity, or the relative degree to which plants are preferred, while still 

maintaining the overall order of preferred plants (host rank). Specificity is expected to 

be inherent to the motivation of the female (Courtney et al. 1989), polygenic and 

particularly evolutionarily labile. Studies within butterfly and moth populations have 

found autosomal inheritance of oviposition preference (Tabashnik et al. 1981; Singer 

and Thomas 1988; Jaenike 1989; Bossart and Scriber 1995; Nylin et al. 2005). This 

previous evidence suggests that, within populations encountering a novel, maladaptive 

host plant, oviposition preference should be heritable, autosomal, and determined by 

many genes of small effect. However, to our knowledge, no one has yet examined 

whether this inheritance pattern persists within populations whose stable historical 

resource environment has been disturbed by maladaptive nonnative host plants.  

In the southern Rocky Mountains of North America, the montane butterfly 

Pieris macdunnoughii (Remington 1952) recognizes and lays eggs on the invasive 

Eurasian mustard Thlaspi arvense (Brassicaceae), even though this novel host plant is 

completely lethal to the butterflies’ larvae (Chew 1975; Nakajima et al. 2013; Steward 

et al. 2019). Spatially explicit models of butterfly-host plant interactions within a focal 

invaded population determined that this oviposition mistake results in a significant 

fitness cost in the modeled population (~3%, Nakajima et al. 2013) and should select 

for decreased preference for T. arvense. Whether evolution will, or even can, occur in 
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populations where the invaded plant is abundant depends on whether there is heritable 

genetic variation in preference for the native host plant and T. arvense. However, in the 

150 years since T. arvense was introduced to the region, and the 40 years since the 

maladaptive interaction was first recorded, the butterfly continues to recognize and 

oviposit on the invasive mustard.  

Like many butterflies, Pieris macdunnoughii uses chemical cues to find its 

mustard host plants. Glucosinolates are alcohol soluble secondary metabolites that 

generally play a defensive role for plants in the Brassicaceae (Agerbirk and Olsen 

2012). However, with the help of specialized detoxification mechanisms, butterfly 

larvae within the Pierinae can consume and develop on plant tissue containing 

glucosinolates (Wheat et al. 2007; Edger et al. 2015), and adult females use specific 

glucosinolate compounds as oviposition cues (Huang and Renwick 1993, 1994; Huang 

et al. 1994; Du et al. 1995). Maladaptive host plant recognition by Pieris butterflies in 

North America has largely been attributed to host plant chemistry, specifically 

glucosinolate composition and concentration (Keeler and Chew 2008; Nakajima et al. 

2013; Davis and Cipollini 2014).  

To understand preference variation and heritability in populations of P. 

macdunnoughii confronted by T. arvense, we tested the oviposition preference of wild 

and lab-reared generations of P. macdunnoughii females. Using simultaneous choice 

assays, we compared preference for T. arvense versus a preferred native host using 

whole plants, cut stems bearing leaves, and methanol-based leaf tissue extracts. We 

asked:  

1. Within a population, is there variation in preference for T. arvense, and does this 

variation differ across whole plants, cut stems and methanol extracts?  
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2. Do preferences for T. arvense vary temporally over the growing season or across 

a spatial gradient from invaded to uninvaded habitat from butterflies were 

collected?  

3. Is preference for T. arvense heritable and is heritability of preference driven by 

and therefore higher on methanol soluble plant chemicals?  

Based on the theory that within population variation is attributed to differences 

in individual butterfly motivation in relation to host plant chemistry (specificity; Singer 

2003), we expected host preference to be similar when evaluated on whole plants and 

methanol-based leaf extracts. We expected spatial variation in preference would be 

similar between oviposition substrates, but that any temporal variation in preference 

detected on plants and stems would be in response to changes in the plants, and so 

would not occur when preference was tested on extracts. We expected to find that 

variation in preference is heritable, with an autosomal basis, resulting in daughters with 

similar preferences to their mothers. Because host plant chemistry is thought to be a 

primary mediator of the maladaptive host use, we expected heritability of preference to 

be stronger for extracts than for plants, since environmental variance would be reduced. 

 

2.2 Methods 

Part of a Holarctic expansion and speciation of the Pieris napi species complex, 

Pieris macdunnoughii (previously Pieris napi macdunnoughii) is a montane butterfly 

found in regions of Montana, Wyoming and Colorado (Geiger and Shapiro 1992; Chew 

and Watt 2006). Like most butterflies of the Pierinae, P. macdunnoughii specializes on 

Brassicaceae, including the native host plant Cardamine cordifolia (Gray) (Chew 1975, 

1977). Previous published work on this species has focused on a population of 
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butterflies near the Rocky Mountain Biological Laboratory (RMBL) in Gothic, CO, 

USA (38°57'33.0"N 106°59'23.0"W, 2900m a.s.l.; Chew 1975, 1977; Nakajima et al. 

2013, 2014; Nakajima and Boggs 2015, Steward et al. 2019). Butterflies used in this 

study were collected over multiple summer field seasons (1997, 2006, 2015) from the 

Gothic population and several other populations in the upper East River Valley of the 

Gunnison Basin in Southern Colorado (Figure 2.1). Collection locations were mapped 

with ggmap (Kahle and Wickham 2013) using Google terrain maps (2018).  

T. arvense is an early successional plant that rapidly colonizes exposed soil and 

is most consistently found in heavily disturbed areas (e.g., construction sites, roadways, 

recreational trailheads, and meadows open to cattle grazing). Already established in the 

Great Plains of North America in the early 1800s (reviewed in Warwick et al. 2002), it 

is likely T. arvense was introduced to the Elk Mountains and Gunnison Basin between 

1850 and 1880 as disturbance increased with the influx of miners and ranchers. The 

plant is recorded as present in the Gunnison Basin from the beginning of RMBL 

herbarium records in 1929, and T. arvense has been abundant near Gothic, CO since at 

least the 1970s (Chew 1975).  

All plants used in the preference assays were collected from sites near Gothic, 

CO for all three years of the study (Table B.1). Preference for T. arvense was tested in 

simultaneous choice assays against a preferred native host, Cardamine cordifolia, 

which is abundant throughout the East River Valley.  

We conducted a total of three heritability studies over a span of eighteen years. 

During this time, T. arvense in the East River Valley remained abundant in areas of high 

recreation use and other frequent disturbance. Anecdotally, butterfly population sizes 
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remained large in both invaded and uninvaded areas. Oviposition preference of all 

butterflies across 1997, 2006 and 2015 was assayed using simultaneous choice assays 

conducted in the same laboratory space and conditions. Butterflies were allowed to 

choose between T. arvense and native host C. cordifolia – in the form of either whole 

plants, cut stems bearing undamaged leaves, or filter paper treated with methanol-based 

leaf tissue extracts – and a negative control substrate.  

 

2.2.1 Oviposition preference on whole plants 

In 1997, adult gravid female P. macdunnoughii butterflies were collected over 

three days (June 25 – 27) from Parcel C, a tract of land on Mt. Crested Butte south of 

Gothic, CO, and adjacent to areas invaded by T. arvense (Figure 2.1). In the lab, the 

females were fed twice a day with a 25% honey-water solution. Females were kept in 

0.23m x 0.23m x 0.23m screen cages, with one pot each of T. arvense and C. cordifolia 

and one pot of clover (Trifolium pretense F., Fabaceae), a non-host plant that does not 

stimulate oviposition. Empty space in the cage was filled with a neutral substrate, 

crumpled newspaper, on which the butterflies could land. In all years, larval host plants 

were matched by estimated foliage area. Whenever possible, plants were also matched 

phenologically (pre-flowering, flowering, seeding), although this was a lower priority. 

The cages were stored in an environmental chamber at 27-31oC on a 16:8 L:D cycle. 

Eggs from each host plant were counted and collected every evening.  

Larval offspring were reared in the environmental chambers under the same 

conditions as the ovipositing females. To reduce the level of maternally transmitted 

disease, eggs were first held in bleached coffee filters for eight minutes in 0.075% 
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hypochlorite solution, followed by two five-minute rinses in water. After treatment, 

eggs hatched, and larvae developed on C. cordifolia, which supports rapid development 

(Chew 1975). Plants were replaced as needed during larval development. Pupae were 

collected after hardening of the cuticle, sex was determined, and pupae were grouped 

by sex and brood and left to emerge in screen cages in the environmental chamber.  

Upon adult emergence, the F1 butterflies were numbered individually, and 

brood identity was recorded. Matings were obtained by placing up to 20 individuals 

from desired broods into 30cm x 45cm x 45cm net cages, which were placed outdoors 

in direct sunlight. We tried to mate offspring of mothers that laid at least 30 eggs. The 

ground surrounding the cages was kept moist in order to keep humidity high. Multiple 

mating cages were run at one time, allowing us to avoid sib-sib matings by placing 

males and females of the same brood in different cages. Cages were checked at least 

every 45 minutes, mating pairs removed, and mating combinations recorded. We aimed 

to mate each male with at least two females from different broods to produce pairs of 

half-sib families. Preference tests were repeated on the F1 generation. Their F2 

offspring were reared, mated and also tested, creating a three-generation pedigree in 

which all grandmothers and both parents of the F2 generation were known.  

Plants used in experiments were transplanted from the field (Table B.1) into 10 

cm square pots filled with local soil, with one exception: T. arvense used in oviposition 

tests for the F2 generation was grown in potting soil from local seed.  
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2.2.2 Oviposition preference on cut stems with leaves 

In 2006, butterflies used in the heritability tests were collected from five sites 

along the East River valley (QC, GC, EGS, and SEGS/SG; Figure 2.1). Females were 

kept in the lab in the same screen cages and cared for as described for 1997. They were 

provided with cuttings of C. cordifolia and T. arvense – again matched by size and, 

when possible, phenology – placed in separate 10cm deep florist’s picks with water. A 

dandelion (Taraxacum officinale Weber Asteraceae) flower was placed in the cage in a 

florist’s pick and spritzed with 25% honey-water twice a day to supplement its nectar. 

Butterflies were hand-fed on the flower twice a day. F1 and F2 generation butterflies 

were reared and mated as described for 1997 and tested on cut stems with leaves.  

 

2.2.3 Oviposition preference on methanol leaf extracts 

Butterflies were collected from many sites along a 5 km transect of the upper 

East River valley. Collection locations were recorded using GPS. Females were brought 

back to the lab, fed 25-30% honey-water solution and held at room temperature 

overnight. The following morning, females were placed into cylindrical clear plastic 

cages (0.18 m height x 0.15 m diam.) with 1 mm holes punched around the top to 

maintain airflow. The floor of the arena was lined with a damp paper towel. Four 

Pastilina modeling clay (Sargent Art) bases (1x1.5x1 cm lwh) were placed in a square 

formation ~ 3 cm apart. Filter paper disks (3 mm diam.; Grade 1, Whatman) were 

placed vertically in each clay base (Figure B.1). Filter paper disks were treated with 80 

µL of either T. arvense or C. cordifolia methanol extract, as described below. The two 

other disks included a control (70% MeOH only) and a blank (untreated), to test 
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whether the butterflies preferentially laid eggs on extract-treated disks. Eggs laid on 

each disk were counted and collected, and the disks were replaced with freshly treated 

disks daily for up to six days or until the butterfly died.  

As in previous years, eggs were sterilized using a weak hypochlorite solution. 

Hatching larvae were transferred to rearing cages containing C. cordifolia leaves and 

kept in the environmental chamber (27-31oC, 16:8 L:D). When C. cordifolia was 

unavailable, larvae were fed young radish leaves (Raphanus sativus) which support 

similar larval survival as native hosts (Chew 1975). Larvae were given constant access 

to fresh food plant until pupation, at which point they were removed from the larval 

rearing cages, grouped by sex and brood, and held at room temperature in screen cages. 

Eclosing butterflies were numbered individually and placed into mating cages as in 

1997 and 2006. We primarily used offspring of females that laid at least 15 eggs. This 

lower cut-off was chosen because, although some butterflies laid many eggs on the 

filter paper, many laid fewer than our original 30 egg cutoff. This, combined with a 

viral infection and poor mating success, limited our sample size. Again, matings were 

arranged so no sib-sib matings occurred and to encourage re-mating of males with 

females from different broods. Mated females in the F1 and F2 generations were tested 

in the same way as the P generation.  

Several butterflies in the F1 and F2 entered diapause, rather than developing 

directly. These pupae were held in an incubator (1-2oC, 12:12 L:D cycle) for 5 months, 

at which point the temperature was raised and the light cycle adjusted (17:27oC, 16:8 

L:D) to bring the butterflies out of diapause. Butterflies were mated under artificial heat 

lamps in greenhouses in cages containing collard (Brassica oleracea) and radish 
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seedlings. The F2 offspring of diapausing F1 individuals developed directly and were 

reared on juvenile radish plants grown from seed before mating and being tested. 

Preference did not differ between direct developing and diapausing females in the F1 

generation (ANOVA, F = 1.23, df = 1,38, p = 0.275). In the F2 generation, diapausing 

butterflies laid 8.62% (+/- 8.37% CI) fewer of their eggs on T. arvense (ANOVA, F = 

4.08, df = 1,44, p = 0.050). Only F1 and F2 had direct developing individuals, and the 

conditions for diapause experienced by wild P individuals differed drastically from 

pupae diapausing in the laboratory, so diapause was not included in the full model 

during statistical analysis.  

2.2.3.1 Preparation of extracts 

Fresh host plants were collected in the field. Leaves were removed from the 

stems of the freshly collected plants, weighed in small packets, and transferred to liquid 

nitrogen. To make the methanol extracts, we modified an extraction procedure from 

Agerbirk and Olsen (Agerbirk and Olsen 2011): once frozen, the leaves were lightly 

crushed, and boiled in 70% MeOH for several minutes before filtering. Excess MeOH 

was used to boil the leaves, so the filtrate was left to evaporate for 24 hours. We added 

a small amount of 70% MeOH to achieve equal concentrations (10g fresh weight/L) in 

the two extracts. Plant extracts were stored in a dark, cool fridge to prevent the light-

sensitive glucosinolates from degrading. Throughout the experiment, we collected and 

froze 80 µL samples of the extracts to evaluate their glucosinolate content. 

 In addition to chemical oviposition stimulation, butterflies respond to visual 

stimuli (Traynier 1986; Snell-Rood et al. 2013). The colors of the two extracts differed 

slightly, so we added green food dye (McCormick Culinary Food Color: water, 
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propylene glycol, FD&C Yellow 5, FD&C Blue 1, and propylparaben) to both extracts 

and the MeOH control (1 mL dye/15 mL extract or MeOH). In the rare cases when 

butterflies laid eggs on disks not treated with extracts, they were far more likely to lay 

on the green (1.086±0.406% of eggs) than the white disks (0. 113± 0. 106% of eggs, 

paired t-test, t = 4.725, df = 181, P < 0.001). 

 

2.2.3.2 Glucosinolate desulfation and quantification 

Glucosinolates in the methanol extracts were desulfated following Prasad et al. 

(2012) and Keith and Mitchell-Olds (2017). Briefly, Sephadex columns (DEAE 25) 

were prepared with 50 µL 1 mM Progoitrin [2(R)-Hydroxy-3-butenyl GSL] analytical 

reference standard (ChromaDex, Inc.). Samples were added to the columns and washed 

twice each with 70% MeOH and dH2O. Excess liquid was drained from the column, 

and the samples were incubated with 30 µL sulfatase for at least 12 hours (2.5 mg/mL).  

Samples were eluted first with 75 µL MeOH followed by 75 µL HPLC-grade water. 

Eluants were transferred into 200 µL microinserts and left uncovered for 24 hours 

before storage at 4-5 oC.  

Desulfoglucosinolates were quantified in the University of South Carolina Mass 

Spectrometry Center using a Thermo Scientific Ultimate 3000 High Performance 

Liquid Chromatography system with a 3400RS binary pump. Chromatography was 

carried out using a Chromegabond WR C18 column (ES Industries; 150 x 2.1 mm, 3 

µm particles, 120Å pore size). The mobile phase contained HPLC-grade water and 

acetonitrile, with a 0.2 mL/min flow rate and the following gradient: 0% acetonitrile (0-

3 minutes), ramp to 20% (3-30 minutes), hold at 20% (30-37 minutes), ramp rapidly to 
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85% (37-44 minutes), return to 0% acetonitrile (44-end). The injection volume of 

samples was 20 µL. Desulfoglucosinolates were detected and quantified with an Agilent 

1100 G1315B diode array detector (DAD) monitoring absorbance at 229 nm and 

subsequently with a Thermo Scientific Corona Veo RS charged aerosol detector (CAD). 

Only desulfoglucosinolates appearing in both the DAD and CAD output were included. 

Glucosinolates were identified using positive ion electrospray ionization with a Waters 

QTof API US quadrupole time-of-flight mass spectrometer. Both mass spectra and 

comparative retention times from the literature (Tolrà et al. 2006; Kusznierewicz et al. 

2013; Olsen et al. 2016; Humphrey et al. 2018) were used to identify 

desulfoglucosinolates (Table B.2). 

At the time leaves were collected to make the extracts, we also collected fresh 

leaf samples to ensure the glucosinolate components of our methanol extracts captured 

the glucosinolate profile of fresh leaf tissue. The sixth leaf from the apical meristem of 

15 plants of each species was collected directly into screw-cap microcentrifuge tubes 

containing 70% MeOH. Leaf samples were kept in a cool, dark location for 8 months, 

which allowed glucosinolates to leach into the surrounding MeOH. Glucosinolates in 

the leachate were desulfated and quantified as described for extracts.  

 

2.2.4 Statistical analysis 

Spatial, temporal and generational patterns of preference were analyzed using 

multiple linear regression (stats package; R Core Team 2018). While butterflies 

collected in 1997 and tested on whole plants all came from the same area, butterflies 

tested on cut stems and on extracts were collected over a 5 km transect in the upper 
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East River valley. To account for any effect of source location on preference, we created 

a ‘Paternal latitude’ variable, which was equal to the collection latitude of the P 

generation, the maternal collection latitude of the F1 generation, and the paternal 

grandmother collection latitude of the F2 generation. The individual locations of 

butterflies were recorded by GPS in 2015, but not in 2006. We used the centroid of the 

collection site as the collection latitude of the 2006 parental generation. We also tested 

a ‘Maternal latitude’ variable, wherein the maternal grandmother collection latitude was 

used for the F2 generation, but this variable explained slightly less of the variation. The 

preference test start day was calculated as an ordinal day from the first test day within 

that generation. In the case of 2015, this numbering system restarted for diapausing 

individuals, so that the first direct-developing individual tested in the generation was 

assigned a start day of 1, and the first diapausing individual tested in the generation was 

also assigned a start day of 1. On whole plants and on cut stems, preference was 

considerably skewed toward C. cordifolia, so the proportion of eggs laid on T. arvense 

plants and cut stems was square-root transformed. To improve our confidence in this 

measure of preference, we only included butterflies that laid at least 30 total eggs, 

although this threshold was reduced to 15 in 2015 to improve the sample size in the F1 

and F2 generations. This allowed us to retain 20 additional related pairs. 

The full linear model for egg laying preference of butterflies tested on whole 

plants evaluated the two-way interaction of generation and start day on the square-root 

of the proportion of eggs laid on T. arvense. For butterflies tested on cut stems and 

those tested on extracts, the full model tested the interaction between generation, start 

day and paternal latitude. To check the effect of diapause in the context of the full 
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extracts model, we nested diapause within generation. Models were hierarchically 

simplified using AICc (MuMin package; Barton 2018), and the fit of nested models 

were compared using likelihood ratio tests (Tables B.3-5). The significance of 

remaining model terms was compared using type II ANOVAs (car package; Fox and 

Weisburg 2011).  

 

2.2.4.1 Heritability 

We used dyadic mixed models (dmm package; Jackson 2016) to evaluate the 

contribution of sex-linked, autosomal and environmental variance to the proportion of 

eggs laid on T. arvense in our choice assays. The dmm package calculates variance 

estimates by first fitting a model using generalized least squares estimates of the fixed 

effects (bias-corrected maximum likelihood). The model residuals are then partitioned 

into environmental and genetic variance components using a dyadic model. Each dyad 

comprises paired residuals of related individuals, which is compared to the expected 

correlation based on the relatedness matrix. Standard errors and confidence intervals of 

variance components are estimated from the multiple linear regression of the dyads 

using GLS methods. We formulated a pedigree and calculated an autosomal and sex-

linked relatedness matrix for each year. The dmm package relies on nadiv (Wolak 2012) 

to generate genetic relatedness matrices for autosomes and the shared sex chromosome 

(Z).  The dmm package does not require all individuals following the parent generation 

to have known fathers and mothers. As gravid females were collected in the wild, we 

did not know the identities of the F1 fathers. We could not assume shared fathers 

because sperm precedence in this species is likely not complete (Wedell and Cook 
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1998). We also reran the analyses with unique mates for all P females included in the 

pedigree, and while this slightly reduced the absolute values of the variance component 

estimates, the general contribution and significance of the genetic components were the 

same. The relatedness matrices were included as random effects in mixed models with 

proportion of eggs laid on T. arvense as the response variable. We ran two models for 

each year, one with no covariates to estimate heritability with spatial and temporal 

variability included within environmental variance. The second included the covariates 

from the best fit linear model. For each model, the program calculated the proportion of 

the phenotypic variance apportioned to autosomal additive genetic variance, sex-linked 

additive genetic variance, and environmental variance (VP = VG + VE, where VG = VA + 

VZ). Too few individuals were reared to test for maternal effects or dominance. The egg 

cut-off (30 for whole plants and cut stems, 15 for extracts) did not affect the overall 

phenotypic variance or the additive genetic variance. We ran the 2015 model with a 30-

egg cut-off and the variance estimates were similar.  

 

2.3 Results 

2.3.1 Preference on whole plants and cut stems 

In both 1997 when female oviposition preference was tested on whole plants 

and in 2006 when female oviposition was tested on cut stems, the proportion of eggs 

laid on T. arvense ranged from 0 to 1, but butterflies tended to prefer native C. 

cordifolia (skew toward 0, Figure 2.2). Preference variation for the two plants within 

the parental generation was similar (F-test of variances, F(32,28) = 0.703, p = 0.334). 
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Preference shifted toward T. arvense in subsequent generations, especially F2 (Figure 

2.2), a main effect that was significant in 1997 (Table 1).  

Oviposition preference was affected by the day females started choice trials 

(Figure 2.3). Rather than a constant decline in preference for T. arvense over the 

summer, the effect of start day differed among generations and was largely driven by 

declining preference for T. arvense by F2 individuals tested in late August and early 

September 1997 (Figure 2.3A, Table 2.1). On cut stems, the strongest effect of start day 

was again observed in declining preference for T. arvense in the F2 generation (Figure 

2.3B, Table 2.1).  

Butterflies tested on whole plants were all collected from a single location 

(Parcel C), but in 2006, butterflies were caught along a 5 km transect in the East River 

Valley before being tested on cut stems of T. arvense and C. cordifolia (QC, GC, EGS, 

SEGS/SG; Figure 2.1). This spatial variation was included in the best fit model, but 

there was no significant correlation between collection location (= likely paternal 

latitude) and proportion of eggs laid on T. arvense in any generation (Figure 2.4A, 

Table 2.1).  

2.3.2 Preference on methanol leaf extracts 

Unlike butterflies tested on plants, wild-caught (P) butterflies tested on extracts 

(2015) did not prefer C. cordifolia over T. arvense. The variance of preference was also 

significantly smaller on extracts than on plants (2015 v. 1997 F-test of variances, F(93,28) 

= 0.304, p < 0.001; 2015 v. 2006 F-test of variances, F(93,32) = 0.432, df = 93, 32, p = 

0.002). None of the butterflies that laid enough eggs to be included in the data set 

oviposited exclusively on one plant extract (Figure 2.2, light gray). Testing butterflies 
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on extracts effectively eliminated the temporal variation introduced by testing them on 

plants and stems, the characteristics of which may change with time. There was no 

effect of start day in any of the generations (Figure 2.3C, Table 2.1). However, 

preference for T. arvense significantly decreased with increasing paternal latitude 

(Figure 2.4B, Table 2.1).  

 

2.3.3 Heritability 

When taking only the pedigrees into account, additive genetic variance was 

attributed to sex-linked components. This evidence was strongest when butterflies were 

tested on whole plants (Figure 2.5A; VZ/VP = 0.49±0.24) and remained significant 

when covariates from the best fit linear model were included (generation x start day; 

VZ/VP = 0.43±0.29). Sex-linked genetic variance estimates were slightly lower, but still 

significant, for butterflies tested on cut stems (Figure 2.5B; VZ/VP = 0.38±0.25). While 

the model including covariates supported these results, the sex-linked additive genetic 

variance was not significant (generation x start day + paternal latitude; VZ/VP = 0.10 

±0.32). In both models, the phenotypic variance apportioned to autosomal additive 

genetic variance was negligible (Table 2.2). Rather, there was a general non-significant 

negative correlation between the proportion of eggs laid by mothers and daughters on 

the nonnative host (1997: slope = -0.063± 0.178, Figure B.2A; 2006 slope = -

0.101±0.152, Figure B.2C). Estimates of other variance components did not change 

when VA was removed from the model.  

Variance components of preference for extracts did not reflect those for plants and 

stems (Table 2.2). The pedigree-only model attributed significant additive genetic variance to 
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autosomal components (Figure 2.5C; VA/VP = 0.35±0.31), with negligible sex-linked 

components. However, inclusion of covariates from the best fit model (generation + 

start day + paternal latitude) shifted the variance attributions. The total estimated 

genetic variance was lower (VA/VP + VZ/VP = 0.19), but most of this was attributed to sex-

linked rather than autosomal genetic variance (VZ/VP = 0.14±0.43).  

2.3.4 Glucosinolate components 

The majority of glucosinolates detected in leaf leachates (Figure 2.6A) were also 

recovered in methanol extracts (Figure 2.6B) for both T. arvense (2/3) and C. cordifolia 

(7/10). Sinigrin (2-propenyl) and glucocochlearin (1-methylpropyl) were the dominant 

glucosinolates in T. arvense and C. cordifolia, respectively. Concentrations applied to 

filter paper were considerably lower than those estimated for fresh leaves.  Relative 

concentrations of different compounds were generally similar between leaves and 

extracts, with several exceptions. Glucoputranjivin (1-methylethyl, dGSL MW: 281) 

was higher, relative to other glucosinolates, in extracts than in leaf samples. For both 

plants, gluconapin (3-butenyl; dGSL MW 293) was found in leachates, but not in 

extracts, based on CAD peaks that were also detected by DAD.  

  

2.4 Discussion 

We found a sex-linked genetic basis of female preference for the novel, 

nonnative host plant T. arvense. Evidence was strongest when tested on whole plants 

but was replicated on cut stems and generally persisted when significant environmental 

covariates were considered in the heritability analyses. Z-linkage of P. macdunnoughii 

preference was unexpected. Within-population inheritance of lepidopteran oviposition 
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preference, attributed more often to specificity and female motivation than differences 

in the overall attractiveness of available host plant species, has often been found to have 

an autosomal genetic basis (Tabashnik et al. 1981; Singer and Thomas 1988; Jaenike 

1989; Bossart and Scriber 1995; Nylin et al. 2005). Z-linkage, on the other hand, is 

thought to be characteristic of fixed differences between populations and species (Janz 

1998, 2003). Geographically distant populations of the Comma butterfly, Polygonia c-

album, consistently demonstrated sex-linked differences in host-plant choice (Janz 

1998; Nylin et al. 2005), whereas preference variation within populations was inherited 

autosomally (Nylin et al. 2005). Preference differences between Papilio glaucus and P. 

canadensis were also sex-linked (Scriber 1994), but sex-linkage disappeared within a 

late-flying hybrid population (Mercader and Scriber 2007).  

Janz (1998, 2003) proposed that stable preference differences between 

populations and species are caused by accumulation and fixation of adaptive loci on the 

Z-chromosome resulting from extended association with different stable host plant—

and selection—environments. Preference genes on the Z-chromosome under selection 

in the historical resource environment should be fixed (or have considerably lower 

variation) within populations, and the remaining detectable variation should have an 

autosomal genetic basis. Instead, within this P. macdunnoughii population, unfixed Z-

linked variation is responsible for choice between T. arvense and C. cordifolia plants 

and stems, suggesting that the introduction of novel plants unmasks genetic variation 

for preference that may be analogous to that usually found between butterfly 

populations. If this is the case, we expect preference tests between pairs of native host 

plants to reveal autosomal, not Z-linked, inheritance patterns.   
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Selection is expected to remove alleles with low fitness under “common” 

conditions, while deleterious mutations only expressed in stressful or novel 

environmental conditions are more likely to remain (Hoffmann and Merilä 1999). A 

similar hypothesis of mutation accumulation has been invoked to explain why 

herbivorous insects often have difficulty reverting to historical hosts after adoption of a 

new host (Grosman et al. 2015).  Under selection for improved preference and 

performance on the novel host, selection is relaxed for use of the historical host, 

allowing deleterious mutations to accumulate. When insects once again have access to 

the historical host, fitness on the historical host is often lower than on the newly 

adopted host (Grosman et al. 2015). Fitness may also be lower than that of conspecifics 

that have continued to use the historical host (Buckley and Bridle 2014). Persistent 

genetic variation for oviposition on T. arvense and the inability of larvae to consume 

the plant may have resulted from a similar pattern of mutation accumulation. While the 

ancestral host ranges of P. macdunnoughii and its North American congeners are 

unknown, the European sister taxon to all North American Pieris species, Pieris napi, 

readily lays eggs and develops on T. arvense (Friberg et al. 2015). If we hypothesize the 

ability to eat T. arvense was lost in North American Pieris populations, Pieris 

butterflies on novel hosts (current native hosts) cannot revert to ancient host (T. 

arvense), because genes for accepting and eating this host that still exist in the 

population are accumulating deleterious mutations that are only revealed in the 

presence of T. arvense.  

Although female butterflies rely on a variety of cues to identify host plants, host 

plant recognition and preference is overwhelmingly attributed to plant chemistry 
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(Dethier 1954; Ehrlich and Raven 1964; Renwick 1989; Carrasco et al. 2015). 

However, plant chemistry can change rapidly as a result of contact, damage, oviposition 

or abiotic conditions (Louda and Rodman 1983; Cipollini et al. 2005; Mithöfer and 

Boland 2012). We expected methanol-soluble host plant chemistry captured in our 

extracts, specifically glucosinolates, to be the major driver behind variation in 

preference for T. arvense.  As we predicted, butterflies were stimulated to lay eggs on 

methanol-based leaf extracts and extracts eliminated some of the preference variation 

that may have been caused by differences in plant quality or chemistry. Start day, which 

affected preference of both whole plants and cut stems, did not significantly affect 

preference of extracts, suggesting extracts successfully eliminated differences among 

cues presented to butterflies within and between generations.  

Heritability analyses of extract preference did not match those for whole plants 

or cut stems. In fact, heritability patterns observed on extracts were primary autosomal, 

although with covariates there was no detectable genetic variance and again the 

phenotypic and genetic variance estimates were lower than on plants and stems. The 

combination of decreased phenotypic variance on extracts and autosomal inheritance 

suggest that responses to these cues may have been under selection for an extended 

period, and therefore part of the historical recognition system. While decreased 

phenotypic and genetic variance could be an effect of a more constant oviposition cue, 

this is also expected for loci that have experienced consistent, long-term purifying 

selection (Weis and Abrahamson 1986; Hoffmann and Merilä 1999; Huang et al. 2015). 

As an entire plant, T. arvense is a relatively novel resource. However, the cues available 

in the methanol extracts may have been less so. Considering only the glucosinolate 
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components, both sinigrin and gluconapin are found in Descurainia incana, another of 

P. macdunnoughii’s native, high-quality host plants. Preference variation involving 

these specific cues may have preceded the introduction of T. arvense.  

Furthermore, preference of wild-caught females for T. arvense consistently 

decreased to the north up the East River valley. When this spatial term was included in 

the dyadic mixed model, evidence for sex-linkage in tests of extracts was restored, 

though not significant. This may be evidence for spatial genetic structure within the 

population and may not have been detected in 2006 due to poor sample size from 

northernmost sample sites. Further investigation of the genetic structure of butterflies in 

the East River valley and the Gunnison basin will be necessary to evaluate whether this 

is true and whether heritability differs between putative populations.  

 Our conclusions about the relative importance of glucosinolates in the 

differences between plants and extracts are limited because the leaf extracts did not 

capture the full array of phytochemical cues available to ovipositing butterflies. The 

extracts captured most of the glucosinolate compounds found in T. arvense and C. 

cordifolia leaves, but the concentrations applied to filter paper were considerably lower 

than those of fresh leaves. Low glucosinolate concentrations likely contributed to the 

overall decreased preference variation on extracts. Acknowledging the simplified cue 

set provided in our preference assays, the loci responsible for responding to these 

particular cues are autosomal and unlikely to be playing a primary role when female 

butterflies are choosing between T. arvense and C. cordifolia.  

It is possible the differences observed between the studies, conducted at nine-

year intervals, were influenced by changes in preference for T. arvense within the 
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population, rather than in response to the oviposition substrate. Although host plant 

preference can change within lepidopteran populations over a generation (Singer 2003), 

no major shifts in preference for T. arvense have been observed over the 45 years this 

population of P. macdunnoughii has been studied (Chew 1977, Nakajima et al. 2013, 

Steward, RA, Boggs, CL, unpubl.) It is also unlikely that sex-linked genetic variation 

was lost from the population in under two decades, when the population(s) have been 

exposed to the plant for closer to 15 decades.  

We found that butterflies collected from the wild (P) generation consistently laid 

more eggs on C. cordifolia than T arvense, especially when tested on whole plants. This 

preference decreased in lab-reared generations. The trend for lab-reared individuals to 

prefer T. arvense warrants further examination, and may have resulted from learning, 

differences in mating experience or fecundity, life history, or variation in plant traits 

over time. Unlike the lab-reared F1 and F2 generation, wild-caught female butterflies 

mated in the field may have mated multiply and likely had prior oviposition 

experiences on hosts available in their habitat. Prior experience has been shown to 

affect P. napi preference for available host plants, especially when the historical 

relationship between the plant and host is old (Gamberale-Stille et al. 2018). Decisions 

by females are also influenced by fecundity which can modify the relative risk of poor 

host choice. P. napi butterflies with low fecundity were less likely to oviposit on lower 

ranked hosts (Schäpers et al. 2017). We expect that any effect of experience or 

fecundity in our experiment increased environmental variance, making the heritability 

estimates more conservative.  
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Like the wild-caught P generation individuals, all of which overwintered as 

pupae, diapausing F1 and F2 individuals in our 2015 dataset tended to have lower 

preference for T. arvense, although diapause was not as significant predictor of 

preference. Although host plant specificity is linked to the number of generations a 

population goes through in a flight season (voltinism, Scriber 1994; Nylin et al. 2009), 

it is unclear whether diapause directly affects host plant preferences. This may be 

because it is difficult to separate the effect of diapause from the effect of seasonal and 

phenological changes in available host plants. For the most part, preference for T. 

arvense decreased with start day within generation when tests were conducted on more 

than three days (excluding F1 butterflies tested on cut stems). There is also evidence 

that preference for T. arvense tends to decrease over the season within this P. 

macdunnoughii population (RA Steward and CL Boggs unpubl.). This may be due to 

decreased plant nutritional quality or changes in available glucosinolate cues. Females 

prefer methanol-based extracts of budding and flowering T. arvense to extracts from 

plants that have already gone to seed (Steward, RA, Boggs, CL unpubl.).  

One prediction for the evolution of host plant specialization is that the 

preference of mothers will be correlated with the performance of their offspring, and 

this is generally supported in long-term associations between insects that use a small 

subset of host plants (Gripenberg et al. 2010; Balagawi et al. 2013; Masselière et al. 

2017), although preference-performance correlations range from good to poor 

(Thompson 1988b; Friberg et al. 2015). While reduced offspring performance is 

expected during initial stages of colonizing a novel host (Thompson 1988b; Garcia-

Robledo and Horvitz 2012), preference-performance correlations have been implicated 
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in rapid adaptation to novel hosts (Keeler and Chew 2008). Covariance of preference 

and performance traits at the genetic level are important to this process (Via 1986; 

Bossart 2003). Given that any oviposition on T. arvense by P. macdunnoughii is 

maladaptive, there is already strong evidence that preference and performance are 

decoupled in this system. The strong signal of sex-linked preference on whole plants 

and cut stems contrasts with evidence that performance has an autosomal basis. Short-

term larval performance metrics correlated strongly within sibling groups (Steward et 

al. 2019), and the genomic basis for the ability of closely related P. napi to eat and 

survive on T. arvense has been localized to autosomes (Steward, RA, Wheat, CL, 

Wiklund, C, Boggs, CL, unpubl.). This decoupling, combined with the fact that 

preference precedes performance and in the absence of de novo mutation, means any 

adaptation by the butterfly to the plant will depend primarily on the evolution of 

preference.   

 

2.5 Conclusions 

Our study revealed an unexpected genetic basis for preference for a novel host 

plant. However, given heritable genetic preference variation and considerable selection 

against oviposition on T. arvense, it is even more puzzling that we have found no 

evidence for increased avoidance of the lethal host. There must be additional 

constraints on the evolution of host plant preference, such as gene flow between 

invaded and uninvaded areas. Cue similarity, the hypothesis that recognition of T. 

arvense depends on the same chemical, visual or tactile stimuli that are used to evaluate 

native host plants, is another possible constraint. Sex-linked preference for T. arvense 
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may mean this cue response is dissimilar and not under the same selection pressures as 

normal host preferences. Cue similarity perhaps plays a role when butterflies assess 

certain chemical cues, but additional stimuli ultimately influence choice between 

available host plants. Further studies evaluating the genetic basis of preference for both 

native and nonnative hosts will be necessary to evaluate the mechanisms maintaining 

maladaptive preference in P. macdunnoughii populations.  
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2.7 Tables 

Table 2.1. ANOVA hypothesis tests for significance of linear model terms. Models 

were hierarchically simplified using AICc values (Tables B.3-5).  

 
Year Response Model Term F df P-value Sig. 

1997 Sqrt. proportion of eggs 

laid on T. arvense plants 

Generation 15.86 1, 115  < 0.001 * 

Start day 1.88 2, 115 0.172  

Generation * Start day 3.79 2, 115 0.026 * 

2006 Sqrt. proportion of eggs 

laid on T. arvense stems 

Generation 1.98 2, 167 0.142  

Start day 1.61 1, 167 0.206  

Paternal latitude 2.39 1, 167 0.124  

Generation * Start day 4.33 2, 167 0.015 * 

2015 Proportion of eggs laid on 

T. arvense methanol extract 

Generation 2.86 2, 172 0.060 • 

Start day 2.55 1, 172 0.112  

Paternal latitude 4.45 1, 172 0.036 * 
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Table 2.2. Dyadic mixed model estimates used to calculate the proportion of the 

phenotypic variance attributed to environmental (E), autosomal (A), and sex-linked (Z) 

variance components (Figure 2.5). Asterisks indicate estimates that are significant (95% 

confidence interval does not overlap zero).  

 
Year Model Component Var. Estimate Lower 95% CI Upper 95% CI Sig 

1997 Pedigree  VE 0.073 0.049 0.097 * 

VA 1.00x10-9 -0.023 0.023 
 

VZ 0.073 0.027 0.118 * 

VP 0.146 0.117   0.174  

Pedigree + Covariates VE 0.046 0.031 0.062 * 

VA 3.00x10-4 -0.015 0.016 
 

VZ 0.035 0.005 0.066 * 

VP 0.082 0.063   0.101  

2006 Pedigree VE 0.061 0.046 0.076 * 

VA 1.00x10-9 -0.013 0.013 
 

VZ 0.038 0.007 0.068 * 

VP 0.099  0.080  0.117  

Pedigree + Covariates VE 0.062 0.048 0.076 * 

VA 1.00 x10-9 -0.012 0.012 
 

VZ 0.007 -0.021 0.035 
 

VP 0.069 0.053  0.086  

2015 Pedigree VE 0.022 0.012 0.033 * 

VA 0.012 0.004 0.020 * 

VZ 1.00 x10-9 -0.021 0.021 
 

VP 0.034  0.0226  0.0453  

Pedigree + Covariates VE 0.025 0.015 0.034 * 

VA 0.002 -0.006 0.009 
 

VZ 0.004 -0.015 0.024 
 

VP 0.031  0.020 0.041  
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2.8 Figures 

 

Figure 2.1. Collection sites for female butterflies caught in 1997 (Parcel 

C), 2006 (QC, GC, EGS, and SEGS/SG), and locations of individuals 

caught in 2015 (white circles) in the upper East River valley near Gothic, 

CO, USA. The triangle represents the northernmost extent of T. arvense 

within the valley as of 2015, which was likely similar to the extent in 

1997 and 2006. 
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Figure 2.2. Density plots of untransformed proportion of eggs laid on T. arvense by (A) wild-caught P generation females and (B) 

lab-reared F1 and (C) F2 generations in simultaneous choice experiments conducted on whole plants (1997, dark gray), cut stems 

(2006, gray), and MeOH extracts (2015, light gray). Proportions of eggs were square-root transformed for all other 1997 and 2006 

analyses.  
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Figure 2.3. The effect of within-generation start day on the proportion of eggs (A, B: square-root 

transformed) laid on T. arvense plants by the parental (P), F1, and F2 generations in (A) 1997, (B) 2006 

and (C) 2015. Lines and 95% confidence intervals (gray) are based on best fit linear models (Table 2.1, 

Tables B.3-5).  
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Figure 2.4. The effect of latitude on the proportion of eggs laid on T. arvense plants by the parental (P), 

F1, and F2 generations in (A) 2006 and (B) 2015. Lines and 95% confidence intervals (gray) are based 

on the best fit linear model (Table 2.1, Tables B.3-5). Dotted lines indicate model terms that were 

retained in the best fit model, but not significant.

A 

B 
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Figure 2.5. Proportion (+/- 95% CI) of the phenotypic 

variance (1.0) apportioned to additive sex-linked genetic 

variation (VZ), additive autosomal genetic variation (VA), and 

environmental variation (VE) for preference tested on (A) 

whole plants, (B) cut stems and (C) methanol extracts. 

Variance components modeled without any covariates 

(triangles) were all significant, while those modeled using 

terms from the best fit models for each year (circles) often 

were not. Due to sparseness of the relatedness matrix, several 

of the confidence intervals were calculated as infinite (dotted 

lines).  
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Figure 2.6. Glucosinolate concentrations in (A) leachates of leaves collected from the field and (B) 

methanol extracts made from leaves of the same plants and used in choice assays in 2015 (Table B.2).

A 

B 
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CHAPTER III: 

THE ROLE OF CUE SIMILARITY IN MAINTAINING A PERSISTENT 

HOST-PLANT BASED EVOLUTIONARY TRAP2 

 

  

                                                 
2 Steward, RA, Boggs, CL. To be submitted to Ecological Monographs. 
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3.1 Introduction 

As humans continue to rapidly modify natural environments, ecological and 

evolutionary traps are increasingly common (Schlaepfer et al. 2002; Robertson et al. 

2013; Hale and Swearer 2016). Evolutionary traps occur when novel resources and 

habitats lead to preference-performance mismatches based on evolved recognition 

systems and are a subset of the maladaptive interactions that occur between organisms 

and their biotic and abiotic environments as a result of rapid anthropogenic 

environmental change (Magnan et al. 2016). As novel maladaptive interactions arise, it 

is important to consider how and when they are encountered (i.e. distribution and scale 

of maladaptive conditions), their potential fitness costs, and population level effects 

(e.g. local extinction, population sink; Hale and Swearer 2016). Whether maladaptation 

persists depends on the interaction of geographically heterogeneous selection pressures, 

underlying genetic variation, inflexible recognition systems and gene flow (Crespi 

2000; Kawecki and Ebert 2004; Blanquart et al. 2013; Farkas et al. 2015). Yet, our 

understanding of these processes has come primarily from populations already in the 

process of locally adapting to recent environmental change. Cases of long-term 

maladaptation to specific, quantifiable selection pressures are less well-studied (Arnold 

1992; Crespi 2000; Farkas et al. 2015).  

Evolutionary traps are not inescapable and there is evidence of rapid local 

adaptation in response to such traps (Carroll 2007; Keeler and Chew 2008; Olivieri et 

al. 2016). Escape trajectories can be categorized as ‘decreased preference’ or ‘improved 

exploitation’ (Chew 1975; Schlaepfer et al. 2002; Carroll 2007), in which selection 

favors either individuals that avoid the novel resource or those that are better at using it. 
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When abiotic features in the environment are mistaken for food or habitat (Gwynne and 

Rentz 1983; Szaz et al. 2015; Robertson et al. 2018), or the resource is completely 

lethal and no variation in ability to exploit it exists in the population (Chew 1977a; 

Davis 2015), increased exploitation is not an option.  

One potential constraint on escape from such traps is cue similarity, whereby 

overlapping cue sets link decreased preference for the novel, unsuitable resource with 

decreased preference for the historical or native resource. In evolutionary traps, 

maladaptive interactions with novel resources or habitats are mediated by previously 

evolved cue-response systems that are no longer reliable (Sih et al. 2011). Cue sets 

involved in mistakenly selecting low-quality novel resources are expected to resemble 

those of historical resources but can vary in the strength of that resemblance. A large 

overlap in the composition or intensity of the cue sets may mean that narrowing or 

refining the recognition system causes individuals to reject high-quality resources, 

transitioning the maladaptive response from mistake to miss (Fox and Lalonde 1993; 

Macmillan and Creelman 2004). Fitness costs of rejecting good resources (misses) may 

outweigh those of using trap resources (mistakes), thereby maintaining the maladaptive 

behavior in a population (Fox and Lalonde 1993; Robertson et al. 2013).  

Cue similarity may be especially important in maintaining host plant-based 

traps, in which native insects use attractive but harmful nonnative plants (Gripenberg et 

al. 2010; Pearse et al. 2013). The prevalence of host-plant based traps has been 

attributed to the high degree of specialization among herbivorous insects (Pearse and 

Altermatt 2013; Forister et al. 2015; Yoon and Read 2016). Host plant specialization 

depends on an efficient recognition system (Holmgren et al. 2007), often at the expense 
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of behavioral flexibility or plasticity (Bernays 2001; Carrasco et al. 2015). 

Discrimination among host plants by specialist herbivores is shaped by the costs 

associated both with accepting poor quality hosts (mistakes) and with excluding high-

quality hosts (misses) (Wood et al. 2018). The costs of misses are expected to be higher 

if insects are time-limited when searching for hosts rather than reproductively limited 

(Rosenheim et al. 2000; Snell-Rood and Papaj 2009). 

Most butterflies are host plant specialists, with species feeding on few plant 

families (Ehrlich and Raven 1964; Futuyma 1976; Hamm and Fordyce 2015). Among 

butterflies, host plant recognition is often mediated by plant chemistry, which acts as a 

cue for feeding or egg-laying (Ehrlich and Raven 1964; Bernays and Graham 1988; 

Thompson and Pellmyr 1991; Renwick and Chew 1994; Futuyma and Agrawal 2009). 

Butterflies are particularly susceptible to evolutionary traps imposed by invasive plants, 

which may share the stimulants or lack the deterrents necessary for determining 

suitable hosts (Graves and Shapiro 2003; Schlaepfer et al. 2005; Yoon and Read 2016). 

For example, at least three of five recognized North American Pieris butterfly species 

have populations involved in invasive plant-based evolutionary traps (Chew 1977b; 

Chew and Courtney 1991; Keeler and Chew 2008; Nakajima et al. 2013; Davis and 

Cipollini 2014).  

In many cases, the formation of butterfly-host plant evolutionary traps has been 

followed by rapid shifts in female preference, larval performance or both (Agosta 2006; 

Keeler and Chew 2008; Singer and McBride 2010). In others, however, apparently 

maladaptive recognition of novel host plants persists (Nakajima et al. 2013; Brown et 

al. 2017). Here, we evaluate the role of cue similarity in maintaining persistent 
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maladaptive oviposition by a native North American butterfly species on a lethal, 

nonnative host plant. We predicted that there would be overlap in the composition and 

strength of cue-sets of native and nonnative host plants, that dominant components of 

the cue-set of the nonnative host would contribute to egg-laying decisions, and that 

preference for dominant cues and for the nonnative host would be correlated with 

preference for native hosts with similar cue sets.  

 

3.2 Study System 

Our study focused on a population of Pieris macdunnoughii (formerly Pieris 

napi macdunnoughii Remington) (Chew and Watt 2006)  butterflies in the East River 

Valley near the Rocky Mountain Biological Laboratory in Gothic, CO, USA 

(38°57'33.0"N 106°59'23.0"W, 2900m a.s.l.). Like most pierine butterflies (Pieridae; 

Pierinae; Renwick 2002; Braby and Trueman 2006; Wheat et al. 2007), P. 

macdunnoughii recognizes and oviposits exclusively on mustards (Brassicaceae; Chew 

1977b). Ovipositing females accept a range of native and nonnative plants, including 

the invasive Eurasian species Thlaspi arvense (Chew 1977a; Rodman and Chew 1980). 

Females in the East River Valley population generally lay more eggs on highly 

favorable native hosts, but some butterflies still lay many of their eggs on T. arvense. 

This variation in preference for plants is heritable and sex-linked within invaded 

populations (Steward, RA, Epanchin-Niell, RS, Boggs, CL, unpubl.). However, T. 

arvense is completely lethal to P. macdunnoughii larvae: no larvae raised on a diet of T. 

arvense in the lab or field survive past the pupal stage (Chew 1975; Nakajima et al. 

2013; Steward et al. 2019; Boggs & Wiklund, unpubl.). Co-occurrence with T. arvense 
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in one field setting has been estimated to reduce fitness of ovipositing females by 

around 3% based on larval survival, habitat occupancy by females, and the distribution 

and abundance of the lethal nonnative in relation to other hosts (Nakajima et al. 2013; 

Nakajima and Boggs 2015). This represents a significant selection pressure favoring 

escape from this trap. However, no adaptive response has occurred in the half century 

since this evolutionary trap was first recorded (Chew 1975, 1977a) and up to a century 

and a half since the plant first invaded the Rocky Mountains (Best and Mcintyre 1975).  

Oviposition by Pieris butterflies is largely stimulated by the presence of 

glucosinolates (GSLs; Huang and Renwick 1993, 1994; Huang et al. 1994; Du et al. 

1995). These defensive chemicals are stored in the leaves until damage brings them into 

contact with myrosinase enzymes, which catalyze degeneration into toxic products such 

as isothiocyanates, and in the presence of additional specifier proteins into thiocyanates, 

nitriles, and epithionitriles (Halkier and Gershenzon 2006). Similar GSL structures 

occur in T. arvense and native host plants, but the extent of overlap and the relative 

concentrations of cue sets are unclear. The GSL profile of T. arvense appears to be very 

simple: only three unique GSL structures have previously been identified in the leaf 

tissues and sinigrin (allyl- or 2-propenyl GSL) is by far the most dominant (Rodman 

and Chew 1980; Tolrà et al. 2006; Kuchernig et al. 2011). Each of the two primary 

native hosts of P. macdunnoughii, Cardamine cordifolia and Descurainia incana, 

produce GSLs, although only D. incana also produces sinigrin (Rodman and Chew 

1980; Louda and Rodman 1983; Humphrey et al. 2018).  
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3.3 Methods 

Our study consists of several linked components. We confirmed the GSL 

profiles of T. arvense and native hosts. We tested the effect of sinigrin on female 

butterfly preference by comparing preference for sinigrin (a) against other 

commercially available GSLs, (b) at different concentrations and (c) in the presence of 

myrosinase. Finally, to test whether decreased preference for T. arvense is correlated 

with decreased preference for D. incana and that this is related to an overall decreased 

preference for the sinigrin cue, we performed a multi-assay cross-over experiment 

(Figure 3.1). We tested the preference for sinigrin of wild-caught butterflies, which 

were then transitioned onto assays testing preference for a sinigrin-containing plant 

(either D. incana or T. arvense) over C. cordifolia, a host that does not produced 

sinigrin. Butterflies were randomly assigned to the D. incana or T. arvense assay first, 

after which they were moved to the other plant assay.  

 

3.3.1 Host plant chemistry 

In 2015 and 2017, we collected fresh leaf samples from each of the focal host 

plants (T. arvense, C. cordifolia and D. incana) to confirm the glucosinolate profiles. 

Collection sites differed in 2015, but all samples in 2017 were collected from Gothic, 

CO (N 38.957, W106.989). The fifth, sixth or seventh leaf from the apical meristem of 

5-15 plants of each species was collected directly into screw-cap microcentrifuge tubes 

containing 70% MeOH (Table C.1). Leaf samples were kept in a cool, dark location for 

8-16 months, which allowed GSLs to leach into the surrounding MeOH. 
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Glucosinolates in the MeOH extracts were desulfated following Prasad et al. 

(2012) and Keith and Mitchell-Olds (2017). Briefly, Sephadex columns (DEAE 25) 

were prepared with 50 µL 1 mM Progoitrin [2(R)-Hydroxy-3-butenyl GSL] analytical 

reference standard (ChromaDex, Inc., Irvine, CA, USA). Samples were added to the 

columns and washed twice each with 70% MeOH and dH2O. Excess liquid was drained 

from the column, and the samples were incubated with 30 µL sulfatase for at least 12 

hours (2.5 mg/mL).  Samples were eluted first with 75 µL MeOH followed by 75 µL 

dH2O. Eluants were transferred into 200 µL microinserts and left uncovered for 24 

hours before storage at 4-5 oC. 

DesulfoGSLs were quantified in the University of South Carolina Mass 

Spectrometry Center using a Thermo Scientific Ultimate 3000 High Performance 

Liquid Chromatography (HPLC) system with a 3400RS binary pump. Chromatography 

was carried out using a Chromegabond WR C18 column (ES Industries; 150 x 2.1 mm, 

3 µm particles, 120Å pore size). The mobile phase contained HPLC-grade water and 

acetonitrile, with a 0.2 mL/min flow rate and the following gradient: 0% acetonitrile (0-

3 minutes), ramp to 20% (3-30 minutes), hold at 20% (30-37 minutes), ramp rapidly to 

85% (37-44 minutes), return to 0% acetonitrile (44-end). The injection volume of 

samples was 20 µL. DesulfoGSLs were detected and quantified with an Agilent 1100 

G1315B diode array detector (DAD) monitoring absorbance at 229 nm and 

subsequently with a Thermo Scientific Corona Veo RS charged aerosol detector (CAD). 

Only desulfoGSLs appearing in both the DAD and CAD output were included. 

Glucosinolates were identified using positive ion electrospray ionization with a Waters 

QTof API US quadrupole time-of-flight mass spectrometer. Both mass spectra and 
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comparative retention times from the literature (Tolrà et al. 2006; Kusznierewicz et al. 

2013; Olsen et al. 2016; Humphrey et al. 2018) were used to identify desulfoGSLs 

(Table C.1). 

We used multiple approaches to compare desulfoGSL quantities between plant 

species and collection year. First, we evaluated the presence or absence of desulfoGSLs 

in leaf samples from each plant using binomial generalized mixed models (lme4 

package, Bates et al. 2015). Second, we compared log-transformed quantities (µmol 

dGSL g−1 of dry leaf mass) of GSLs detected in the leaf samples using linear mixed 

models. Third, we compared the subset of sinigrin concentrations in D. incana and T. 

arvense in 2015 and 2017. Finally, we used principal component analysis to identify 

axes of divergence among all the samples.  

 

3.3.2 Oviposition preference assays: isolated glucosinolates 

For all preference assays, gravid female butterflies were caught in the field and 

brought back to the lab where we weighed and fed them and estimated their age based 

on wing-wear. Wing-wear categories ranged from 0.5 (recently emerged, wings still 

flexible) to 3.5 (severely worn with portions of the wing margin missing), increasing by 

0.5 increments. All butterflies in the lab were fed a 25-30% (v/v) honey-water solution 

ad-libitum twice daily. Freshly caught females were held at room temperature (17 – 25 

oC) overnight before participating in an assay.  

Assays were conducted in an environmental chamber (27-31:17-19 oC, 16:8 h 

L:D). Assay arenas consisted of cylindrical clear plastic cages (0.18 m height x 0.15 m 

diam.) with 1 mm holes punched around the top and damp paper towels lining the floor 
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to maintain airflow and humidity (Figure C.1). Oviposition assays using GSL isolates 

(described below) were conducted using treated filter paper disks. Four Pastilina 

modeling clay (Sargent Art) bases (1x1.5x1 cm lwh) were placed in a square formation 

~ 3 cm apart on the floor of the arena. Filter paper disks (3 cm diam.; Grade 1, 

Whatman) were treated with GSL or control solutions and placed vertically in each clay 

base. Eggs laid on each disk were counted, and disks were replaced with freshly treated 

disks daily. When testing leaves or cut plants, the petioles or stems were placed in 

flower picks, which were secured vertically to the side of the assay arena using floral 

wire. Water in the flower picks was refreshed daily, but except in cases of severe 

wilting, the same cut stems were used through the full three days of the host plant 

choice assays. Eggs were checked daily and counted at the end of the study.  

 

3.3.2.1 Glucosinolate choice 

In 2016, preference for sinigrin (SIN; GSL class = alkenyl) was tested against 

glucotropaeolin (benzyl GSL; TROP; aromatic) and glucoiberin (3-

methylsulfinylpropyl GSL; GIB; aliphatic sulfur-containing side chain), which were the 

only GSLs previously detected in leaf samples from T. arvense in Colorado (Rodman 

and Chew 1980). Pure isolated glucosinolate potassium salts (Sinigrin hydrate 

potassium salt: Sigma Aldrich, Milwaukee, WI; Glucotropaeolin potassium salt: 

ChromaDex, Irvine, CA; Glucoiberin potassium salt: Cerilliant, Round Rock, TX) were 

used to make 1 mM solutions. Butterflies were provided with three filter paper disks 

treated with 100 µL of each of the GSL solutions or with a distilled water control, for 

an average of 1.63 µmol g-1 filter paper (based on an average filter paper mass of 61.2 
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mg). In addition to chemical oviposition stimulation, butterflies respond to visual 

stimuli (Traynier 1986; Snell-Rood et al. 2013). We added green food dye (McCormick 

Culinary Food Color: water, propylene glycol, FD&C Yellow 5, FD&C Blue 1, and 

propylparaben) to all GSL solutions and the water control (1 mL dye/15 mL solution).  

 

3.3.2.2 Sinigrin Concentration 

We compared preference for increasing concentrations of sinigrin. In 2016, 

wild-caught butterflies (n = 19) were provided with a control disk (water, 0 mM 

sinigrin, increased to 1x10-6 in the statistical analysis) and three disks treated with 100 

µL of increasing concentrations of sinigrin:1 mM, 10 mM, or 25 mM (1.63, 16.3, or 

40.9 µmol sinigrin g-1 filter paper). Solutions were prepared and applied as described 

above. Butterflies were tested up to five consecutive days or until they died. \ We 

repeated the experiment in 2017 with lab-reared females that mated in an unsupervised 

cage. When females began to lay eggs, we moved them from the mating cage to 

individual assay arenas. Based on results from 2016, we excluded the control disk and 

instead added a fourth sinigrin treatment: 56.4 mM (92.2 µmol sinigrin g-1 filter paper).  

 

3.3.2.3 Sinigrin + myrosinase 

In the presence of myrosinase enzyme, sinigrin degrades into allyl-

isothiocyanate. To test whether female preference is affected by allyl-isothiocyanate, 

we gave females a choice of sinigrin-treated disks (100 µl 25 mM = 40.9 µmol sinigrin 

g-1 filter paper) with or without myrosinase (Sigma Aldrich, Milwaukee, WI). The 

sinigrin solution was prepared as described above, including the addition of green dye. 
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Disks were treated with equal amounts of sinigrin. Then, 20 µL myrosinase solution 

(1.667units mL-1 KH2PO4 buffer) or an equal quantity of buffer without myrosinase was 

added to the center of the disk and allowed to bleed to the edges. Butterflies were also 

provided with two controls: buffer with dye and an unaltered filter paper disk. No eggs 

were laid on the white disk, so this factor level was excluded from analyses.  

We did not measure the amount of isothiocyanate produced by the addition of 

myrosinase. However, we did compare the amount of sinigrin recovered from disks 

treated with sinigrin and buffer and those treated with sinigrin and myrosinase by 

preparing the disks, allowing them to dry as we did for the preference assays and 

placing them into screw-cap microcentrifuge tubes containing 70% MeOH. 

DesulfoGSLs were quantified as described above (Host Plant Chemistry). We also 

compared sinigrin content of the GSL solutions of various concentrations.  

 

3.3.3 Oviposition preference assays: Sinigrin rejection and linked host plant 

preference 

We carried out a multi-assay crossover study to evaluate whether decreased 

preference for sinigrin was related to decreased preference for T. arvense and D. 

incana, P. macdunnoughii’s native host that produces sinigrin (Figure 3.1).  

 

3.3.3.1 Sinigrin rejection 

Butterfly preference for sinigrin was tested using a simultaneous choice assay 

between C. cordifolia leaves painted with either water or a sinigrin solution. We used 

leaves rather than filter paper disks to identify decreased preference for sinigrin given 
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an attractive background glucosinolate profile. Fresh, undamaged (no signs of 

herbivory or previous oviposition) C. cordifolia leaves were taken from the same plant, 

matched by mass, painted with either 100 µL distilled water or 25 mM sinigrin solution 

and allowed to dry. We placed sinigrin-treated and control leaves in flower picks 

secured to the sides of the choice arena (Figure C.1). Butterflies were tested on the 

sinigrin-rejection assay for at least one day. If they laid eggs during that time period, 

they transitioned to the host plant choice assays. If they did not, they were held another 

24 hours for a maximum of three days at which point all butterflies that did not lay eggs 

were released back at their collection sites.  

 

3.3.3.2 Preference for sinigrin-containing host plants 

Subsequently, butterflies were moved onto a choice assay between cut stems of 

C. cordifolia and a sinigrin-containing mustard: either the native host D. incana or the 

novel trap T. arvense (Figure 3.1). Butterflies were provided with flower picks holding 

cut stems bearing leaves and, in most cases, the apical meristem of each plant. Cut 

stems are appropriate stand-ins for whole plants when assessing relative oviposition 

preferences (Friberg and Wiklund 2016). When possible, we matched both species by 

phenology (e.g. budding, flowering, seeding) and size. Eggs laid on the cut stems were 

counted daily, but not removed from the plant to reduce the possibility of damaging the 

leaves. Butterflies were assigned to their first assay (D. incana or T. arvense) randomly, 

and after three days were switched onto the alternative assay (Figure 3.1). We recorded 

the total number of eggs laid on each plant over the three-day period, and these counts 

were used as the response variables in statistical analyses.  
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3.3.4 Statistical analysis 

We used a hurdle model approach to compare desulfoGSL quantities between 

plant species and collection year. First, we performed a qualitative analysis of the 

glucosinolates in each sample, evaluating the presence or absence of desulfoGSLs using 

binomial generalized mixed models (lme4 package; Bates et al. 2015). Second, we 

compared log-transformed quantities (µmol dGSL g−1 of dry leaf mass) of GSLs 

detected in the leaf samples using linear mixed models. We also compared the subset of 

sinigrin concentrations in D. incana and T. arvense in 2015 and 2017 using linear 

models. Finally, we used principal component analysis to identify axes of divergence 

among all the samples (FactoMineR package; (Sébastien Lê et al. 2008).  

Oviposition preference for GSL solutions was evaluated as the number of eggs 

laid on available substrates in each assay using negative binomial generalized linear 

mixed models with butterfly identity (ID) as a random effect (NBGLMM, lme4 

package). Predictors included in full models differed between assays (Table C.5). 

Models were hierarchically simplified, and we selected the model with the lowest AICc 

(MuMin package; Barton 2018) and BIC (stats package; (R Core Team 2018) that did 

not significantly differ from the next largest model (likelihood ratio test, χ2 

distribution). We performed additional analyses to compare the relative proportions of 

eggs laid in several of the assays. The probability of laying eggs on sinigrin, 

glucotropaeolin or glucoiberin solutions was assessed with multinomial models, while 

relative preference for sinigrin and sinigrin treated with myrosinase were analyzed 
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using quasibinomial generalized linear models (QBGLM). These models were 

hierarchically simplified as described above.   

To test the effects of butterfly age (i.e. wing wear) and mass, which are 

generally autocorrelated, we calculated a mass-wear residual from a polynomial linear 

regression of mass against log2-transformed wing wear. Wing wear estimates are often 

comparable within but not between flight seasons (years), so mass-wear models were fit 

separately for every assay. The exception was the sinigrin concentration assay in 2017, 

which was conducted on butterflies reared in the lab. Butterflies mated either their first 

or second day after eclosion and were transitioned onto choice assays without being 

weighed. Thus, neither wing wear nor a mass-wear residual were included in the model.   

We analyzed sinigrin rejection using NBGLMs with number of eggs laid on the 

sinigrin-treated leaf as the response variable. The full model included the three-way 

interaction between total eggs (log-transformed), mass-wear residual and age. We used 

NBGLMMs to analyze the number of eggs laid on the sinigrin-containing host in the 

host plant choice assays. The full model included the interaction between total eggs laid 

(log-transformed), assay (the plants being tested), order (DT or TD) and the proportion 

of eggs laid on the sinigrin-treated leaf in the sinigrin rejection assay. Because this last 

was included as a continuous explanatory variable, bounded by 0 and 1, we originally 

only included butterflies that laid at least 15 eggs in the sinigrin rejection assay. 

However, because this predictor was eventually dropped from the model, we reduced 

this threshold to 2 eggs, which did not change the form of the final best fit model. 

Finally, we tested the correlation in preference between host plants using a BGLM 

(quasibinomial distribution) with the proportion of eggs laid in the first assay as the 
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explanatory variable and the proportion of eggs in the second assay as the response 

variable. 

 

3.4 Results 

3.4.1 Host plant chemistry 

Thlaspi arvense had the simplest GSL profile of the three species. Only three 

known GSLs were detected in any of the samples (Table C.1; Figure 3.2A). Despite this 

simplicity, T. arvense did not have lower GSL concentrations than either of the native 

hosts. Instead, D. incana had the lowest total GSL concentration (two-way ANOVA, 

F(2,51) = 5.70, P = 5.81x10-3). Total glucosinolate differences between species were 

driven by high concentrations of GSLs within dominant classes: alkenyl aliphatic GSLs 

(class D), such as sinigrin and gluconapin (3-butenyl GSL) in the profiles of both D. 

incana and T. arvense, and branched-chain aliphatic GSLs (class C) including 

glucoputranjivin (1-methylethyl GSL), glucoconringian (isobutyl / 2-methylpropyl 

GSL) and glucocochlearin (sec-butyl / 1-methylpropyl GSL) in C. cordifolia leaves 

(Table C.3, C.4; Figure 3.2A). Total GSL concentration differed significantly between 

2015 and 2017, although while C. cordifolia GSLs decreased, both D. incana and T. 

arvense had more total GSLs in 2017 (two-way ANOVA, F(2,51) = 6.98, P = 2.09x10-3; 

Figure 3.2B). The qualitative and quantitative GSL profile differed among species 

between years (Table 3.1, C.3). When analyzed by class, rather than GSL compound, 

the significant effect of species and year persisted (Table C.3, C.4). Comparing between 

the T. arvense and D. incana profiles, T. arvense had significantly more sinigrin than D. 

incana in both 2015 (Tukey’s mult. comp., t-ratio = -6.82, df = 33, P = 6.06x10-7; 
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Figure 3.2A), and 2017 (Tukey’s mult. comp., t-ratio = -4.60, df = 33, P = 3.54x10-4; 

Figure 3.2A,).  

The C. cordifolia GSL profile diverged considerably from those of the other two 

plants. In a principle components analysis, C cordifolia samples diverged on a primary 

axis which accounted for 58.6% of the variance and was primarily driven by aliphatic 

branched-chain GSLs (Figure 3.2C). PCA axis 2 explained 15.8% of the variance with 

sinigrin, glucotropaeolin (benzyl GSL), gluconapin and glucobrassicanapin (4-pentenyl 

GSL) as major contributors.  

 

3.4.2 Oviposition preference assays: Glucosinolate solutions 

3.4.2.1 Glucosinolate choice 

Butterflies were significantly more attracted to the sinigrin treated disk than to 

those treated with glucotropaeolin or glucoiberin (NBGLMM, χ2 = 42.6, d.f. = 2, p = 

5.51x10-10; Table 3.2, C.5; Figure3.2A), with butterflies laying an estimated average 

72.0% of eggs on sinigrin, 25.2% on glucotropeaolin, and only 2.8% on glucoiberin at 

average mass-wear values (multinomial GLM, P-value < 0.001; Table 3.2, C.5; Figure 

3.2B). While mass-wear residual was not a significant predictor of the number of eggs 

laid on each disk (Table C.5), it did affect the proportion of eggs laid on each of the 

GSL treated disks (multinomial model, χ2 = 9.93, d.f. = 2, P = 6.98x10-3; Table 3.1; 

Figure 3.2B). Response rates were low: only 14 of the 35 butterflies responding to the 

GSL cues. Among responding butterflies, none oviposited on the untreated control filter 

paper disk. 
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3.4.2.2 Sinigrin concentration 

Preference increased with sinigrin concentration (Table 3.2, C.5; Figure 3.2C, 

D). Wild-caught butterflies (2016, n = 18) laid almost no eggs were laid on the control 

and relatively few on the 1mM sinigrin disks (NBGLMM, χ2 = 55.5, d.f. = 1, P = 

9.261x10-14; Figure 3.2C).  Above 10mM, preference began to plateau, and females laid 

similar proportions of eggs on 10 mM and 25 mM sinigrin solutions. The same pattern 

was observed among (naïve) lab-reared females (2017, n = 11), although there was 

much more variation in the number of eggs laid by individual females, especially at 

lower sinigrin concentrations (NBGLMM, χ2 = 4.84, d.f. = 1, P = 0.0256; Table 3.2, 

C.5; Figure 3.2D).  

 

3.4.2.3 Sinigrin + myrosinase 

Butterflies (n = 18) laid more eggs on sinigrin treated disks than on the water 

control (NBGLMM, χ2 = 33.5, d.f. = 2, P = 5.18x10-8; Table 3.2, C.5; Figure 3.2E). 

Relative to sinigrin disks treated with buffer, adding myrosinase did not affect the 

number of eggs laid by female butterflies. over the course of 3-5 days, butterflies laid 

an average of 14–18 eggs on both treatments). Nor was the proportion of eggs laid on 

each filter paper disk affected by butterfly wing-wear or mass-wear residual, or the 

presence of myrosinase (BGLM, Table C.6). Generally, butterflies laid an estimated 

55.0% (95% CI: 47.5 - 62.3%) of their eggs on the myrosinase treated filter paper 

(BGLM, Table 3.2).  

Compared to pure sinigrin solution or filter paper treated with sinigrin solution 

and buffer, myrosinase addition decreased the amount of desulfo-sinigrin recovered 
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from sinigrin-treated filter paper, although this difference was not significant (LM, F(2,3) 

= 7.87, P = 0.064; Figure 3.2F).  Each disk was treated with 100 µL 25 mM sinigrin 

solution. We recovered 25.9% (95% CI: 12.3 – 39.5%) less desulfo-GSL from disks 

with myrosinase (n=2) than disks with just buffer (n=2).  

 

3.4.3 Sinigrin rejection 

Among all butterflies (n = 83) there was no significant preference for sinigrin on 

a C. cordifolia leaf background and eggs laid on sinigrin-treated leaves increased 

proportionally to the total number of eggs laid in the assay (Table C.6; Figure C.2). 

However, individual butterflies’ preferences ranged broadly: 10.8% of butterflies tested 

laid 10% or fewer of their eggs on the treated leaf, while 22.9% of butterflies laid at 

least 90% of their eggs on the sinigrin leaf.  

 

3.4.4 Preference for sinigrin-containing host plants 

Butterflies laid more eggs on the first choice test they experienced, regardless of 

whether they started on the D. incana (DT) or T. arvense (TD) assay (Table 3.3; Figure 

3.4 A, B). Preference in the sinigrin-rejection assay did not affect the number of eggs 

laid on either sinigrin-containing host (NBGLM, likelihood ratio test, χ2 = 0.014, df = 

1, P = 0.907; Table C.6). However, while TD butterflies had equal preference for the 

sinigrin-containing host plant and the C. cordifolia control in both assays (NBGLM 

Tukey’s multiple comparison, Z-ratio = -2.152, P = 0.137; Table C.7, Figure 3.4B), DT 

butterflies tended to prefer D. incana, but then laid significantly fewer eggs on T. 
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arvense than on C. cordifolia in the second assay (Tukey’s multiple comparison, Z-ratio 

= 4.178, P < 0.001; Table C.7; Figure 3.4A).  

It is unlikely these differences were caused by differences in egg loads between 

DT and TD butterflies. Overall, DT and TD butterflies had laid the same number of 

eggs in in the sinigrin-rejection assay (LM, F(1,77) = 0.2.99, P = 0.088) and laid similar 

numbers of eggs in the first assays (LM, F(1,74) = 0.0187, P = 0.892) and the combined 

total eggs laid prior to the second assay were the same for both DT and TD butterfl ies 

(LM, F(1,77) = 1.408, P = 0.239).  

The proportion of eggs laid on the sinigrin-containing plant in the first assay 

was not correlated with the proportion of eggs laid on the sinigrin-containing plant in 

the second assay (QBGLM, analysis of deviance, deviance = 31.1, df = 2, P-value = 

0.270; Table C.8; Figure 3.4C, D). There was a loose cluster of eight TD butterflies that 

laid fewer than 50% of their eggs on both T. arvense in the first assay and D. incana in 

the second assay. But, overall the proportion of eggs laid on the sinigrin-containing host 

plant in the second assay was only significantly affected by assay order (QBGLM, 

likelihood ratio test, χ2 = 17.3, df = 1, P < 0.001; Table 3.3) 

 

3.5 Discussion 

We found similarities between the glucosinolate cues of the lethal invasive 

mustard T. arvense and the native host plant D. incana, but these similarities did not 

constrain P. macdunnoughii preference for the two hosts. Both plants produced large 

quantities of sinigrin and other alkenyl GSLs. In isolation, sinigrin was a major 

oviposition stimulant. But, we found no evidence of correlated preferences for these 
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two host plants, or for sinigrin and either of the host plants. Instead, we observed that 

butterflies’ oviposition experiences modified their preferences. Our results suggest 

experience and behavioral plasticity play an important role in mediating the fitness 

consequences of maladaptive host plant preferences.  

 

3.5.1 Cue similarity does not constrain host plant recognition 

For the relative costs of host plant mistakes and misses to explain the 

persistence of the T. arvense trap, our minimum expectation was that low preference for 

T. arvense would be correlated with low preference for D. incana (Fox and Lalonde 

1993; Mayhew 2001; Doak et al. 2006; Wood et al. 2018). But, individual P. 

macdunnoughii preferences for T. arvense and D. incana were not related. This result 

was surprising because contact chemoreception of GSL cues has generally been 

considered among the most important strategies used by pierine butterflies when 

evaluating available mustard hosts, especially at small spatial and temporal scales 

(Renwick and Chew 1994). Previously evidence that Pieris species respond differently 

to certain GSLs supported the assumption that these were primary cues for oviposition 

decisions. For example, P. oleracea females are more attracted to sinigrin and sinigrin-

producing plants than P. rapae females (Huang et al. 1994; Du et al. 1995). Conspecific 

Pieris females also respond more strongly to certain GSLs than others, both in plantae 

and on abiotic substrates (Ma and Schoonhoven 1973; Traynier and Truscott 1991; 

Huang and Renwick 1994; Huang et al. 1994; Du et al. 1995; Newton et al. 2010; Rohr 

et al. 2012).  
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Thlaspi arvense’s foliar GSL profile is very simple. This is especially evident 

when compared with model Brassicaceae species, such as Arabidopsis thaliana (≥ 25 

GSL structures; Fahey et al. 2001) or Brassica rapa (≥ 15, ISO 1992), but also 

compared to the native host plants C. cordifolia (we detected 10 structures) and D. 

incana (6). We consistently detected only three known GSL structures in T. arvense 

leaves: sinigrin, gluconapin (butenylGSL) and glucotropaeolin (benzylGSL) over two 

years of sampling. As in previous studies, (Rodman and Chew 1980; Tolrà et al. 2006; 

Kuchernig et al. 2011), sinigrin was by far the dominant GSL structure. Sinigrin and 

alkenyl GSL dominance is a defensive strategy found in other members of the 

Thlaspideae (e.g. Alliaria petiolata Cipollini 2002) and in the genus Streptanthus 

(Thelypodieae, Cacho et al. 2015), but the origin and effectiveness of this strategy 

against herbivores, especially naïve herbivores, is largely unknown (but see Cacho et al. 

2015; Frisch et al. 2015). 

Glucosinolate content was extremely different between the two years. This 

variation may have been caused by differences in abiotic conditions between years or 

collection locations. Constitutive and induced foliar GSL content is highly sensitive to 

environmental variation, including light intensity, soil moisture and ambient 

temperature (Louda and Rodman 1983; Siemens et al. 2012; Tong et al. 2014; 

Humphrey et al. 2018). The resulting spatial and temporal variation in the relative 

composition and strength of host plant cues could also limit the evolution of P. 

macdunnoughii’s host plant recognition system (Fox and Lalonde 1993).  

When tested in isolation on a filter paper background, we found sinigrin was a 

stronger oviposition stimulant than aromatic or short sulfur-containing side chain GSLs. 
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Stimulatory effects of isolated sinigrin are also well documented for native North 

American Pieris species P. oleracea (Huang and Renwick 1994; Du et al. 1995) and P. 

virginiensis (Davis et al. 2015). There is a direct mismatch between preference for 

sinigrin and performance of larvae. Sinigrin has a distinctly negative effect on feeding 

larvae, especially at high concentrations (Davis et al. 2015; Steward et al. 2019). For 

neonate P. macdunnoughii, sinigrin deters feeding and significantly increases mortality 

(Steward et al. 2019).  

Yet, sinigrin in host plant leaves is not as important to preference as the filter 

paper assays implied. When tested on a C. cordifolia leaf background, sinigrin had no 

overall effect on preference, mirroring Davis et al (2015) who found sinigrin added to a 

native host plant did not affect the average preference of female P. oleracea butterflies. 

Like many herbivorous insects, Pieris butterflies may perceive and respond to cue 

blends differently than they do to each cue in isolation (Bruce and Pickett 2011; 

Cunningham 2012). We designed the assay with mixtures in mind. In the context of the 

cue similarity hypothesis, the primary phenotype of interest is rejection of an attractive 

host plant given the presence of a shared cue. And despite the overall lack of preference 

for treated or untreated leaves, there was considerable variation among individual 

preferences for sinigrin, with 15.7 % of responding butterflies laying less than 25% of 

their eggs on treated leaves. However, this individual variation did not have the 

preference consequences we expected. Preference for sinigrin was not an important 

predictor of preference for either sinigrin-producing host plant. So, while sinigrin is 

clearly contributing to egg-laying decisions, it is not the primary mediator for whether 

butterflies prefer T. arvense or D. incana to mustards to that do not produce sinigrin.  
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These results, while unexpected in the context of the cue-similarity hypothesis, 

are supported by recent research showing that preference for T. arvense over C. 

cordifolia plants is heritable and sex-linked. When the same assays were repeated using 

only the methanol-soluble chemical cues extracted from the host plant leaves, the 

additive genetic variance decreased significantly and the remaining genetic variance 

was autosomal (Steward, RA, Espanchin-Niell, RS, Boggs, CL, unpubl.). Thus, GSL 

cues, considered among the most important part of post-alighting host plant assessment 

by pierine butterflies, may only play a supporting role to other leaf traits, such as 

nutritional quality (Hwang et al. 2008), gas exchange (but see Langan et al. 2001, 

2004), leaf surface waxes (Eigenbrode and Espelie 1995), or water content (Wolfson 

1980). 

 

3.5.2 Experience modifies host plant preference 

Rather than supporting innate correlated preferences between sinigrin-

containing host plants, our results instead suggest that experience is a major 

determinant of oviposition preference. In the first set of assays, preference for the 

sinigrin-containing plant over C. cordifolia was similar. Generally, butterflies preferred 

D. incana more than they preferred T. arvense, but neither was significantly different 

from equal preference. However, while TD butterflies moved from the T. arvense assay 

onto the D. incana assay maintained this roughly equal preference, those that had 

already experienced the D. incana assay (DT) were far less likely to oviposit on T. 

arvense. These results demonstrate that not only do P. macdunnoughii females modify 
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their preference based on previous experience, but the effect of experience only 

manifests on certain host plants.  

Many lepidopteran species demonstrate behavioral plasticity and associative 

learning following experience with host plants, using visual and chemosensory cues 

(Traynier 1984, 1986; Traynier and Truscott 1991; Cunningham et al. 1998; 

Smallegange et al. 2006; Snell-Rood and Papaj 2009; Snell-Rood et al. 2009; Jones and 

Agrawal 2017, 2019; Gámez and León 2018). Butterflies also demonstrate biased 

behavioral plasticity in response to host plants and mates, demonstrating different 

responses as a result of experiences with different training cues (Westerman et al. 2012; 

Gamberale-Stille et al. 2019). Gamberale-Still et al. (2019) found Polygonia c-album 

and Vanessa cardui butterfly host-searching behavior was primed by prior experience 

alighting and ovipositing on host plants, but the strength of priming differed among 

host plants. Stronger responses, especially from P. c-album (the lesser generalist of the 

two), were induced by host plants with which the butterflies had a historically older 

association, much like P. macdunnoughii and native hosts D. incana and C. cordifolia. 

Whether behavioral plasticity observed in a lab setting will be adaptive in the wild is 

difficult to extrapolate (Morand-Ferron 2017; Nieberding et al. 2018). Testing biased 

behavioral plasticity in natural plant assemblages will be critical to understanding its 

effects on this evolutionary trap.  

If P. macdunnoughii butterflies have biased behavioral plasticity in response to 

previous oviposition experiences, the fitness consequences of T. arvense invasion may 

be less extreme than those previously predicted (Nakajima et al. 2013; Nakajima and 

Boggs 2015). Nakajima et al. (2013) predicted increased fitness costs associated with 
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the relative abundance of T. arvense. A second individual-based model determined that 

both the relative abundance and the proximity of T. arvense and native host plant 

patches would decrease population growth rates (Nakajima and Boggs 2015). In both 

models, butterflies were assigned fixed preference phenotypes. But, experience-based 

shifts in preferences are expected to streamline the foraging process and facilitate 

accurate host-finding based on the abundance of high-quality hosts (Cunningham and 

West 2008). Given our results, these models likely underestimate the degree to which 

the relative abundance and distribution of host plants affects fitness costs, because 

butterflies may be more likely to reject T. arvense after laying eggs on native hosts.  

Plasticity in host plant preference may account for the persistence of 

maladaptive egg-laying on T. arvense in this population. While plasticity often buffers 

native species from strong negative selection pressure from invaders, it has the potential 

to decouple preference phenotypes from underlying genotypic frequencies, thereby 

dampening phenotypic evolution in response to environmental change (Mery and 

Kawecki 2004; Ghalambor et al. 2007; Berthon 2015; Murren et al. 2015). Plasticity is 

most likely to constrain phenotypic evolution when learning or a plastic behavior 

improves the performance of otherwise less-fit genotypes (Paenke et al. 2007). 

Furthermore, by decreasing the strength of selection acting directly on preference 

genotypes, plasticity may amplify the potential impacts of other evolutionary 

constraints, such as migration selection balance and temporal fluctuations in selection 

pressures.  
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3.7 Tables 

Table 3.1. Analysis of deviance (Wald’s χ2 type II) comparisons of GSL differences 

between C. cordifolia, D. incana, and T. arvense in 2015 and 2017. The presence of 

glucosinolate structures was compared using a binomial generalized linear mixed model 

while log2-transformed GSL quantities were compared using a linear mixed model.   

 
Response Predictor χ2 d.f. P-value 

Qualitative profile: 

Presence/absence of GSLs 

Plant 34.6 5 <0.001 

GSL 48.0 14 <0.001 

Year 1.04 1 0.308 

Plant x GSL 33.9 24 0.086 

Plant x Year 2.26 2 0.322 

GSL x Year 22.2 12 0.036 

Quantitative profile:  

GSL quantity (µmol g-1 dry leaf) 

Plant 1.64 2 0.440 

GSL 947 12 <0.001 

Year 25.0 1 <0.001 

Plant x GSL 164 4 <0.001 

Plant x Year 0.048 2 0.976 

GSL x Year 55.8 12 <0.001 

Plant x GSL x Year 12.6 2 0.002 
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Table 3.2. Effects of GSL compound (SIN = sinigrin, TROP = glucotropaeolin, GIR = glucoiberin), concentration and myrosinase 

(MYR) addition on oviposition preference. The negative binomial generalized linear mixed model (NBGLMM), multinomial model 

and quasibinomial generalized linear model (QBGLM) estimates and standard errors are given on the log, log and logit link scales, 

respectively.  

 

Assay Model Comparison Estimate SE z-ratio P-value 

GSL choice NBGLMM – Tukey multiple comparison SIN vs. TROP 1.605 0.392 4.10 <0.001 

SIN vs. GIR 3.509 0.584 6.01 <0.001 

TROP vs. GIR 1.904 0.608 3.13 0.005 

Multinomial model coefficients SIN – TROP -0.853 0.212 -5.02 <0.001 

SIN – GIR -3.068 0.429 -7.15 <0.001 

TROP - GIR -2.214 0.439 -5.05 <0.001 

Sinigrin concentration NBGLMM – fixed effect Log2 Concentration (2016) 0.362 0.071 5.12 <0.001 

NBGLMM – fixed effect Log2Concentration (2017) 0.162 0.073 2.23 0.026 

Myrosinase NBGLMM – Tukey multiple comparison SIN vs. SIN + MYR -0.224 0.213 -1.05 0.545 

SIN vs. Control 5.839 1.023 5.71 <0.001 

SIN+MYR vs. Control 6.062 1.023 5.92 <0.001 

QBGLM – Tukey multiple comparison SIN vs. SIN + MYR -0.202 0.153 -1.32 0.204 
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Table 3.3. Coefficient estimates for best fit models evaluating the effects of model predictors on the number of eggs laid on the 

sinigrin containing host plant (D. incana or T. arvense) in the choice assays, and the correlation between the proportion of eggs laid 

on the sinigrin-containing host plant in the first assay and that in the second assay. Assay and order refer to the choice assay (D. 

incana or T. arvense tested against the C. cordifolia control) and the order in which the butterfly was tested (D. incana assay first or 

T. arvense assay first). The negative binomial generalized linear model (NBGLM) and quasibinomial generalized linear model 

(QBGLM) estimates and standard errors are given on the log and logit link scales, respectively.  

 

Assay Model Response Fixed effects Estimate SE z-ratio P-value 

Sinigrin rejection NBGLM (dispersion = 4.4242) Eggs Intercept -0.239 0.449 -0.532 0.595 

Log2(Total eggs) 0.902 0.130 6.92 <0.001 

Sinigrin host plant preference 

 

NBGLM (dispersion = 1.8367) Eggs Intercept -0.660 0.504 -1.31 0.190 

Log2(Total eggs) 1.05 0.118 8.92 <0.001 

Assay (T. arvense) -1.22 0.300 -4.08 <0.001 

Order (TD) -0.362 0.311 -1.16 0.246 

Assay x Order 1.05 0.458 2.30 0.021 

QBGLM (dispersion = 11.0410) Prop. Eggs (second assay) Intercept -1.51 0.299 -5.07 <0.001 

Order (TD) 1.48 0.374 3.97 <0.001 
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3.8 Figures 

 

 

Figure 3.1. Crossover design to test preference for sinigrin, T. arvense and D. incana. 

All butterflies were first placed on a one-day simultaneous choice assay between C. 

cordifolia leaves painted with either water or 25 mM sinigrin solution (dotted leaf). 

Butterflies were then sequentially placed on choice assays between C. cordifolia and 

either D. incana or T. arvense for three days before being switched onto the second pair. 
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Figure 3.2. (A) Desulfoglucosinolate quantities (µmol dGSL g-1 dry leaf) detected by 

CAD in C. cordifolia, D. incana and T. arvense leaves in 2015 and 2017. Dashed lines 

delineate different GSL classes: A = sulfur containing side-chain, C (orange) = aliphatic 

branched chain, D (purple) = olefin/alkenyl, E = aliphatic straight and branched chain 

alcohols, G = aromatic, I = Indole. (B) Total dGSL quantities (µmol g-1 dry leaf) in C. 

cordifolia (red), D. incana (blue), and T. arvense (green) in 2015 (circles) and 2017 

(triangles). Points and error bars represent linear model estimates, while boxplots show 

distribution of the data. Letters indicate groups that are not significantly different 

(Tukey’s multiple comparisons). (C) Principle component analysis of dGSL profiles. 

Points represent leaf samples of the three host plants collected in 2015 and 2017. 

Together, PC1 and PC2 explained 71.9% of the variance in dGSL profiles.  

A 

C B 
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Figure 3.3. Butterfly preference for isolated glucosinolates. (A) Total eggs laid and (B) 

proportion of eggs laid as a function of age-corrected mass (mass-wear residual) on 

disks treated with sinigrin (SIN, circles, solid), glucotropaeolin (TROP, squares, short-

dash) and glucoiberin (GIB, triangles, long-dash) in the GSL choice assay. Black points 

(A) represent negative binomial mixed model (NBGLMM) estimates (+/- 95% 

confidence intervals). Solid and dashed lines (B) represent multinomial model 

estimates. (C) Total eggs laid on disks treated with increasing concentrations of sinigrin 

by wild-caught females in 2016, and (D) lab-reared females in 2017. Lines show 

NBGLMM model estimates (+/- 95% confidence intervals). (E) Total eggs (and 
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NBGLMM estimates +/- 95% confidence intervals) laid on filter paper disks treated 

with 25 mM sinigrin solution and 20µL either KH2PO4 buffer or myrosinase (1.67 

units/mL), or an untreated control. (F) Desulfo-sinigrin (dSIN, µmol) detected by CAD 

from solutions differing in sinigrin concentration, or filter paper disks treated with 25 

mM sinigrin solution and 20µL either KH2PO4 buffer or myrosinase (1.67 units/mL). 

Original sinigrin concentration affected the amount of desulfo-sinigrin recovered from 

solutions (F (1,6) = 511.8, P = 4.88x10-7). There was a marginally nonsignificant 

difference between 25mM sinigrin solution, buffer and myrosinase (F (2,3) = 7.87, P = 

0.064). When non-myrosinase samples were pooled, however, desulfo-sinigrin in 

myrosinase treated samples was significantly lower (F (1,4) = 17.6, P = 0.0138). 
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Figure 3.4. Eggs laid on the sinigrin containing host plant (D. incana = blue triangles; 

T. arvense = green circles) in simultaneous choice assays by (A) butterflies starting on 

the D. incana assay and (B) those starting on the T arvense assay.  Dashed lines (slope 

= 0.5) indicate equal preference for the sinigrin-containing host and the control (C. 

cordifolia).  Solid lines represent negative binomial GLM estimates (± 95% confidence 

intervals, Table 3.3, C.6). Correlation between the proportion of eggs laid on sinigrin 

containing host plants by butterflies experiencing (C) D. incana first and T. arvense 

second or (D) T. arvense first and D. incana second. White symbols indicate individuals 

laying fewer than 15 eggs in the first assay.  Solid lines represent quasibinomial GLM 

model estimates (± 95% confidence intervals, table 3.3, C.8). 
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CHAPTER IV: 

PRE- AND POST-INGESTIVE DEFENSES AFFECT LARVAL FEEDING 

ON A LETHAL INVASIVE HOST PLANT3 

 

  

                                                 
3 Steward, RA, Fisher, LM, Boggs, CL. 2019. Entomologia Experimentalis Applicata. 167:292- 

305.  
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4.1 Introduction 

The opportunity for insects to interact with novel non-native plants has 

increased with shifts in species distribution, whether by range expansion or human-

mediated introductions (Morriën et al., 2010; Rasmann et al., 2014). For specialized 

insects, the consequences of these novel interactions depend heavily on plant chemistry 

and its role in both host recognition and feeding (Wiklund, 1975; Pearse et al., 2013; 

Sunny et al., 2015). Host plant-based evolutionary traps arise when non-native plants 

present cues for host plant recognition while also exhibiting defenses – especially novel 

chemical defenses – to which the native specialists are vulnerable (Schlaepfer et al., 

2002; Casagrande & Dacey, 2007; Verhoeven et al., 2009; Robertson et al., 2013; Yoon 

& Read, 2016). This vulnerability is often attributed to chemical novelty: invasive 

plants tend to be well defended, especially against generalists, by chemical defenses not 

found in the native plant community (Cappuccino & Arnason, 2006; Macel et al., 2014; 

but see Lind & Parker, 2010).  

Whether chemical novelty underlies poor performance in host plant-based 

evolutionary traps is unclear and may be associated with how the invasive host affects 

larval feeding patterns. To respond pre-ingestively to a novel food plant, an insect must 

have the physical and neural anatomy necessary to perceive deterrent cues, and an 

evolved aversive response to those cues, all of which might be costly to evolve and 

maintain (Schoonhoven, 1987). Although this does not require deterrents to be currently 

linked to toxicity in a plant (Bernays & Chapman, 1987; Bernays & Graham, 1988), it 

does suggest that defensive chemicals acting as pre-ingestive deterrents in introduced 

plants are unlikely to be evolutionarily novel, or significantly different from those 
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encountered in the native plant community (Berenbaum, 1986). Toxicity, affecting 

larval performance post-ingestively, is more likely to result from chemicals to which 

native specialist insects are evolutionarily naïve. Given the context of chemical 

familiarity but poor performance, insect feeding in evolutionary traps might be affected 

by either deterrents, or toxins, or both pre- and post-ingestive defenses together.  

Butterflies are particularly susceptible to evolutionary traps set by invasive 

plants (Graves & Shapiro, 2003; Schlaepfer et al., 2005; Yoon & Read, 2016). Many 

butterfly species, especially within populations, use a very narrow range of host plants. 

Adult females often identify suitable host plants using chemical cues that may be 

unique to host plants in the historical host plant community, but are shared by related, 

invasive species (Renwick & Chew, 1994). Furthermore, neonate larvae are largely 

immobile and especially dependent on the egg-laying choices, or mistakes, of their 

mothers (Zalucki et al., 2002). In many cases, traps have selected for rapid shifts in 

female preference, larval performance, or both (Agosta, 2006; Keeler & Chew, 2008; 

Singer & McBride, 2010). No such shift has occurred for the native North American 

butterfly, Pieris macdunnoughii (Remington) (Lepidoptera: Pieridae) [formerly Pieris 

napi macdunnoughii (Chew & Watt, 2006)]. Females of this species recognize and lay 

eggs on the invasive Eurasian mustard Thlaspi arvense (L.) (Brassicaceae) where they 

co-occur in the Rocky Mountains of Colorado, USA (Chew, 1975, 1977; Nakajima et 

al., 2013). Thlaspi arvense is completely lethal to P. macdunnoughii larvae (Chew, 

1975; Nakajima et al., 2013): no larvae reared on a diet of T. arvense in the lab or field 

survived past the pupal stage (Nakajima et al., 2013). 

The basis for larval mortality on T. arvense is unknown. It has been 
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characterized as poorly defended both physically and nutritionally, with low trichome 

density, high specific leaf area, and a low C:N ratio, all of which are associated with 

increased palatability to herbivorous insects (Okamura et al., 2016). However, as a 

mustard, it is well defended chemically.  

Like most pierine butterflies, P. macdunnoughii oviposits exclusively on 

mustards (Brassicaceae), and oviposition is largely stimulated by the presence of 

glucosinolates, defensive secondary metabolites (Huang & Renwick, 1993; Renwick, 

2002). Considerable variation in glucosinolate profiles (including the diversity and 

abundance of different glucosinolate forms) has been observed among individuals, 

populations, and species of mustards (Fahey et al., 2001; Agerbirk & Olsen, 2012). 

Pierine larvae have evolved resistance to the toxic products of glucosinolates by 

rerouting the hydrolysis pathway that typically forms isothiocyanates – or, in the 

presence of plant specifier proteins, alternative hydrolysis products such as thiocyanates 

and epithionitriles – in the larval gut to instead form less toxic nitriles that can be 

excreted (Wittstock et al., 2003; Wheat et al., 2007; Edger et al., 2015). Although 

pierine butterflies are broadly resistant to glucosinolates, certain glucosinolates have 

deterrent or toxic properties for particular species (Renwick, 2002). 

One of the most remarkable chemical differences between T. arvense and P. 

macdunnoughii’s native hosts is the simplicity of the T. arvense glucosinolate profile, 

which is dominated by the aliphatic glucosinolate sinigrin (allyl- or 2-propenyl-

glucosinolate) (Rodman & Chew, 1980; RA Steward, unpubl.). Sinigrin is a highly 

attractive oviposition stimulant to several native North American Pieris species (Huang 

& Renwick, 1994; Du et al., 1995). However, the effect of sinigrin on Pieris larval 
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performance, and specifically on feeding patterns at various stages of larval 

development, is unclear (David & Gardiner, 1966; Blau et al., 1978; Olsson & 

Jonasson, 1994; Renwick & Lopez, 1999; Smallegange et al., 2007; Müller et al., 2010; 

Santolamazza-Carbone et al., 2014; Davis et al., 2015). Early larval feeding studies 

using the congener P. rapae attributed poor larval performance to alternative sinigrin-

derived products including cyanic compounds (Slansky & Feeny, 1977). Biochemical 

pathways necessary for producing toxic sinigrin derivatives have been identified in T. 

arvense and several other mustards (Kuchernig et al., 2012; Gumz et al., 2015; Frisch et 

al., 2015), but have not been tested in P. macdunnoughii’s native hosts.  

Here, we first explored the action of T. arvense defenses against neonate P. 

macdunnoughii larvae with the goal of determining whether defenses were inhibiting 

the onset of feeding (pre-ingestive deterrent properties) or slowing feeding once it had 

begun (post-ingestive deterrent or toxic properties), compared to larvae on a normal 

host, Cardamine cordifolia (Gray) (Brassicaceae). Second, we compared the probability 

of dying before and after the onset of feeding in order to understand whether starvation 

or ingestion of T. arvense leaf tissue had greater consequences for neonate mortality. 

Third, we tested butterfly populations from an invaded and an uninvaded habitat, to see 

whether there was evidence for population-level differences. Finally, anticipating 

differences in both abiotic and biotic conditions, we compared feeding on whole plants 

in the field with laboratory assays on excised leaves to evaluate whether laboratory 

results effectively captured patterns that might occur in the wild. 

Due to its dominance in the T. arvense glucosinolate profile, we also 

hypothesized that sinigrin negatively affects larval feeding on T. arvense. Larger 
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negative effects of sinigrin addition to T. arvense would be preliminary evidence that P. 

macdunnoughii larvae are affected by alternative sinigrin-derived defenses not found in 

its normal hosts. We first compared the neonate feeding patterns when sinigrin was 

added to non-native T. arvense leaves and those of two native host plants, C. cordifolia, 

which does not naturally produce sinigrin (Rodman & Chew, 1980, Humphrey et al., 

2018), and Descurainia incana (Bernhardi ex Fischer & Meyer) (Brassicaceae), which 

naturally produces sinigrin in small quantities (Rodman & Chew, 1980). Second, we 

monitored survival on treated and untreated leaves over the first 6 days of larval 

growth.  

 

4.2 Methods 

4.2.1 Study system 

Thlaspi arvense was likely introduced to the Elk Mountains and Gunnison Basin 

in Colorado, USA, between the 1850s and 1880s with an influx of miners and ranchers. 

The plant was already established in the Great Plains of North America, with herbarium 

records dating back to the early 1800s (reviewed in Warwick et al., 2002). An early 

successional plant, T. arvense rapidly colonizes exposed soil, and is most consistently 

found in heavily disturbed areas (e.g., construction sites, roadways, recreational 

trailheads, and meadows open to cattle grazing). It was abundant at Gothic (Gunnison 

County, CO, USA; 38°57'33.0"N, 106°59'23.0"W; 2 900 m above sea level) in the 

1970s, when the P. macdunnoughii / T. arvense evolutionary trap was first described 

(Chew, 1975), so populations of P. macdunnoughii in the Gunnison basin have been 

patchily exposed to this lethal nonnative for approximately 45-160 years.  
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4.2.2. Butterfly collection and care 

In June 2016, we collected adult butterflies from Gothic, where native hosts C. 

cordifolia and D. incana and invasive T. arvense were sympatric and abundant, and 

from an uninvaded site 4.5 km to the north, Quigley Creek (38°59'46.9"N, 

107°01'05.3"W). In the laboratory, females were stored individually in 15 × 18 cm clear 

PVC cylinders in a growth chamber, at L16(27-32 °C):D8(16-22 °C) photo-

thermoperiod. They were fed twice daily with 25% (vol/vol) honey-water. Females 

were provided with freshly cut stems of C. cordifolia and T. arvense. We removed egg-

bearing stems from the enclosures and refrigerated (4-7 °C) them for 1-3 days to delay 

hatching. We sterilized eggs in a weak (<5%) bleach solution and water rinse before 

transferring them onto strips of parafilm, which were stored in sterile dishes with 

dampened paper towel. Sterilized eggs were kept in the growth chamber and checked 

daily for first-instar larvae. In the first two experiments, we tested the offspring of 

butterflies from both sites, splitting sibling larvae evenly among treatments. In the final 

experiment, in which sinigrin was added to host plant leaves, we only used offspring 

from butterflies collected near Gothic.  

 

4.2.3 First-instar feeding metrics 

In all laboratory trials, we used three metrics for feeding behavior: larval 

feeding onset, relative gut fullness, and leaf area consumed. Upon hatching, first-instar 

P. macdunnoughii are translucent. Ingested leaf material is visible as it passes along the 

fore- and mid-gut, becoming more diffuse upon entering the hind gut and passing to the 
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rectum for excretion. To assess larval feeding onset, larvae were categorized based on 

the absence of leaf material in the gut (empty), presence of leaf material (fed), or they 

were found dead. For all living larvae that had begun feeding, a relative measure of gut 

fullness was calculated by dividing the length of the gut contents by the full body 

length. Gut contents were measured using ImageJ (Schneider et al., 2012; Rasband, 

2016) as the length along the dorsal midline from the base of the head to the end of the 

visible leaf material. Because the gut contents are less distinct upon entering the hind 

gut, relative gut fullness levels off between 60-70%. This novel approach was used 

because larval mass is highly variable among newly hatched larvae and may fluctuate 

independently of feeding (Zalucki et al., 2012). Previous studies have weighed larvae in 

groups or over longer periods of time (Bowers et al., 1992), but we were able to 

quantify feeding for individual larvae over several hours.  

We calculated change in leaf area for all assays on excised leaves. First instars 

eat very little, so leaf area is less accurate when detecting feeding differences over short 

time periods but served as a useful comparison. Leaves were photographed under a 

Plexiglas window before and after the 6-h laboratory trials. Leaf area was calculated 

using Easy Leaf Area (Easlon & Bloom, 2014). A solid 1 × 1 cm red square was 

included in each photo as the calibration area. Photographs were analyzed using the 

default algorithm, visually inspected for accuracy, and run again using batch-specific 

settings to account for different light conditions across photographs.  

 

4.2.4 Larval feeding in the laboratory 

We compared larval feeding on T. arvense with feeding on native host, C. 
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cordifolia. Plants were transplanted from populations in the Gothic Valley and kept in 

pots in the laboratory. Newly hatched, unfed larvae were placed individually on entire 

excised leaves in 45-mm-diameter Petri dishes lined with moist filter paper. We used 

leaves with no visible signs of previous abiotic or biotic damage. Before and after the 

trial, each leaf was photographed from a fixed distance alongside the red calibration 

square (1 cm2). We photographed larvae using a Leica S6D Greenough 

stereomicroscope at 2, 4, and 6 h. When not being photographed, larvae were kept in 

the growth chamber. Larval feeding onset and relative gut fullness were measured as 

described above. We tested a total of 237 larvae (Table 4.1).  

 

4.2.5 Larval feeding in the field 

To evaluate whether our results on excised leaves in the laboratory reflected 

larval feeding in the field, we placed recently hatched unfed first instars from the 

laboratory on whole plants of both T. arvense and C. cordifolia growing interspersed 

within the same 4 × 4 m patch in Gothic. Larvae were from the same families used in 

the laboratory assay. Four, five, or six larvae were placed onto each plant, always on the 

top 6-8 leaves, and the plants were covered with organza bags secured tightly with 

thread. The entire plant stems were brought into the laboratory after 4 h. Recovered 

larvae were photographed with the stereomicroscope. We recovered 90.1% of the 

larvae, and the final sample size was 254 (Table 4.1). 

 

4.2.6 Larval feeding with sinigrin addition 

Larval feeding was assayed as described above on excised leaves painted with a 
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synthetic sinigrin solution. We tested nonnative T. arvense and natives C. cordifolia and 

D. incana. Unlike C. cordifolia, D. incana produces small amounts of sinigrin (~1% of 

glucosinolates in the leaves; Rodman & Chew, 1980). Entire and undamaged excised 

leaves were photographed, weighed, and painted either with 0.0564 M sinigrin solution 

(sinigrin hydrate, >99% purity; Sigma Aldrich, St. Louis, MO, USA) to add 50 μmol g-1 

of dry leaf mass, as estimated by a standard curve for T. arvense, C. cordifolia, and D. 

incana (adjusted R2 = 0.954), or with a distilled-water control. We previously 

determined the concentration of sinigrin in T. arvense leaves from populations in the 

Gothic valley as [mean ± 95% confidence interval (95% CI) =] 53.87 ± 14.82 μmol g-1 

dry leaf (RA Steward & CL Boggs, unpubl.). Mustard species differ in their distribution 

of glucosinolates within the leaf and on the leaf surface (Badenes-Pérez et al., 2011), 

and although our estimates of glucosinolate concentration are based on whole leaves, 

previous work has shown that sinigrin is found on the leaf surface of T. arvense 

(Griffiths et al., 2001). Painting the leaves with sinigrin solution is unlikely to have 

replicated T. arvense leaf surface encountered by feeding larvae but achieved our goal 

of exposing larvae to increased amounts of sinigrin.  

After the leaf surfaces dried, larvae from within families were evenly assigned 

to treatments. Larvae were placed individually onto treated or control leaves of one of 

the three species, stored in dishes in the growth chamber, and photographed with the 

stereomicroscope at 2, 4, and 6 h. Larval feeding onset and relative gut content was 

measured as described above. A total of 199 larvae were tested (Table 4.2).  
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4.2.7 Larval survival with sinigrin addition 

We continued to observe the larvae over the 6 days following the sinigrin 

addition assay, replacing leaves (treated as described above) every other day. Larvae 

remained in individual Petri dishes and were kept in the growth chambers under the 

same conditions as for adults above. Larval survival was assessed every 24 h up to 144 

h.  

 

4.2.8 Statistical analysis 

Larval feeding in the laboratory was analyzed using a multinomial generalized 

linear model (GLM) (nnet package; Venables & Ripley, 2002) to identify significant 

predictors for the probability of larvae being empty, fed, or dead. The full model 

included a three-way interaction of time (ordered factor), host plant, and population. 

This model was hierarchically simplified, and nested models were compared using 

Akaike’s information criterion (AIC) and Wald’s χ2 tests (stats package; R Core Team, 

2016). The significance of remaining predictors was analyzed with type II ANOVA (car 

package; Fox & Weisburg, 2011).  

Transition probabilities from empty to fed, empty to dead, and dead to fed were 

compared using multi-state models (msm package; Jackson, 2011). The Q-matrix was 

constrained to allow the above transitions, or remaining in the empty or fed states, 

whereas dead was an absorbing state. Time was included as a continuous variable in the 

model, with the specification that observation times did not represent exact transition 

times. Significant predictors from the multinomial GLM were included as covariates in 

the multi-state model. There were few cases of fed larvae dying on T. arvense, but none 
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on C. cordifolia. As this negatively affected confidence interval estimates for C. 

cordifolia, we reran the analysis excluding T. arvense, resulting in similar transition 

estimates as the original model but more confined confidence intervals.  

Not all larvae initially distributed onto plants in the field assay were recovered 

after 4 h. Rates of recovery ranged from 77.2 to 90.2%. We again used a multinomial 

GLM to compare the proportions of empty, fed, and dead larvae at the 4-h timepoint in 

the laboratory and field assays. We excluded all larvae tested on the 2nd day of the field 

assay, when the ambient temperature was much lower in the field due to inclement 

weather, resulting in delayed feeding onset and reduced relative gut content compared 

to the other three assay days. The full multinomial model tested the effects of 

population, host plant, and assay (field or laboratory), and was hierarchically simplified 

as described for the laboratory assay analysis. 

Relative gut fullness was analyzed using a linear mixed model (LMM) (lme4 

package; Bates et al., 2015) for all living larvae that that had started to eat (gut fullness 

>0) from families represented across treatment combinations. The full model included a 

three-way interaction of time, host plant, and population. To isolate post-ingestive 

feeding differences, timepoints were adjusted to reflect the time since a larva was last 

observed empty rather than the time since the beginning of the assay. For example, if a 

larva first had visible leaf tissue in its gut at 4 h, this was adjusted to 2 h in the model. 

Family and larva identity were included as random effects. Models were simplified and 

analyzed as described for the multinomial GLM. Least-squares means (LSM) tests 

(multivariate method) were used to compare differences among treatment levels. As the 

data are proportions, we also tested a logit transformation of the relative gut fullness 



www.manaraa.com

 

99 

variable, but it did not improve the fit. We compared relative gut fullness at the 4-h 

timepoint (unadjusted) of larvae in the laboratory assay with fed larvae recovered from 

the field assay using an LMM, with family identity as a random effect. The model was 

hierarchically simplified and analyzed as above.  

For the subset of larvae that began feeding, we also analyzed change in leaf area 

over the entire laboratory assay. Leaf area was transformed with rank normalization 

(GenABEL package; Aulchenko et al., 2007) and analyzed with type II ANOVA. These 

were verified using an in-house script for parametric bootstrapping (1000 repetitions). 

LSM tests (multivariate method) were used to compare differences among treatment 

levels. 

For the sinigrin addition assay, models were fit and analyzed following the 

methods described above for larval feeding and relative gut content in the laboratory. 

The effect of population was excluded because all butterflies were collected from 

locations near Gothic, and we had previously found no difference between larvae from 

the populations tested in the laboratory assay. Only a single individual that started 

feeding died during the first 6 h of the assay, which reduced the ability of the multi-

state model to estimate transition probabilities and confidence intervals, so this 

individual was excluded from that analysis.  

Again, we analyzed the leaf area consumed over the entire sinigrin assay. Leaf 

area was transformed, analyzed with type II ANOVA, and compared between 

treatments as described above. Larval survival was analyzed using cox mixed effects 

proportional hazards models (coxme package; Therneau, 2015), evaluating the effect of 

host plant and sinigrin addition over 6 days, with a random effect of family. Multiple 
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comparisons (Tukey method) were conducted to compare survival differences among 

treatment levels. 

 

4.3 Results 

4.3.1 Larval feeding in the laboratory and field 

Larvae were 82% as likely to have started eating T. arvense as C. cordifolia after 

2 h, a deficit that did not improve by the end of the assay (Figure 4.1A,B, Tables 4.3 

and D.1). After 6 h, only 70.8% of larvae had started eating T. arvense compared to 

90.6% on the native host. Most larvae that died had not started eating, although two 

larvae that began feeding on T. arvense died by the end of the assay (Figure 4.1A,B). 

Once feeding had begun, larvae on T. arvense leaves also fed significantly more slowly 

than those on C. cordifolia (Figure 4.1E, Tables 4.1, D.3, and D.4). Most larvae eating 

C. cordifolia were able to fill their guts entirely by the 4th hour of feeding: gut fullness 

did not change significantly between 4 and 6 h (LSM multiple comparison: t-ratio = -

1.330, P = 0.75; Table D.4). Relative gut fullness of larvae on T. arvense, on the other 

hand, increased slightly from the 4-h to the 6-h timepoint.  

Feeding differences between treatments after 6 h were not detectable using 

change in leaf area, although leaf consumption was generally higher on the native 

normal host (rank normalization transformed ANOVA: F1,152 = 3.015, P = 0.082; Figure 

D.1). 

Differences in larval feeding onset and gut fullness between host plants were 

also observed in field conditions (Figure 4.1C, D, F, Tables 4.3, D.5, and D.6). The host 

plant effect was smaller in the field. But larval gut fullness was still greater on C. 
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cordifolia than on T. arvense (LSM multiple comparison: t-ratio = 5.782, P<0.001; 

Figure 4.1F, Table D.7). 

Generally, there were no differences between the Gothic and Quigley Creek 

populations, apart from onset of larval feeding in the field (Figure 4.1C, D). There was 

a significant interaction between assay and population: Gothic larvae were less likely to 

start eating in the field, regardless of host plant (Table 4.3).  

 

4.3.2 Larval feeding with sinigrin addition 

Larvae were less likely to start feeding on all leaves treated with sinigrin, 

whether native or non-native. This effect was only significant for T. arvense and C. 

cordifolia on which the addition of sinigrin decreased the onset of feeding by 25-45% at 

all time points (Figure 4.2A,B, Table 4.4). The effect of sinigrin on C. cordifolia was so 

great that the probability of transitioning from empty to fed was not significantly 

different between treated leaves of these two host plants (Table D.9). On D. incana, 

over 90% of living larvae had started eating after 2 h, whether leaves were treated with 

sinigrin or not (Hazard ratio treated: control = 0.886, 95% CI = 0.454-1.727), and by 

the end of 6 h all living larvae had started feeding (Figure 4.2C).  

Mortality among unfed larvae ranged from 0 to 26.5% and was generally higher 

on sinigrin-treated plants of all species (Figure 4.2A-C). However, larvae were not 

statistically more likely to die on sinigrin-treated than on control leaves during the first 

6 h of the study (Table D.9). These estimates were likely influenced by the lack of any 

larval death in the control D. incana treatment.  

Sinigrin addition decreased larval gut fullness on both native host plants but had 
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no effect on larval gut fullness on T. arvense (Figure 4.2D-F, Tables 4.4 and D.11). For 

both the sinigrin and control treatments using T. arvense, relative gut fullness reached 

30% by the 2nd h, and did not change significantly over the next 4 h. On C. cordifolia, 

the addition of sinigrin decreased larval feeding to T. arvense levels, and after 2 h larval 

relative gut fullness on control T. arvense leaves and treated C. cordifolia leaves was 

not different (LSM multiple comparison: t-ratio = -1.677, P = 0.79; Table D.11).  

Larvae ate the greatest leaf area on D. incana, and the smallest on T. arvense. 

Less leaf area was consumed for leaves treated with sinigrin, regardless of host plant. 

However, neither the effect of host plant nor the effect of sinigrin addition was 

significant for leaf area consumed (Figure D.2). 

 

4.3.3 Larval survival with sinigrin addition 

The addition of sinigrin to leaves of the two native hosts, C. cordifolia and D. 

incana, resulted in lower larval survival in comparison to control leaves. The difference 

in survival between treated and control groups, however, was only significant for C. 

cordifolia (Cox proportional hazards, Tukey multiple comparisons: z = 3.403, P = 

0.009). On T. arvense, poor survival did not differ between leaves treated with sinigrin 

and those treated with water (Cox proportional hazards, Tukey multiple comparisons, z 

= 0.974, P = 0.93; Figure 4.3A, Table D.13). Between the two treatments, only a single 

larva on T. arvense survived to the 6th day of observations. 

Larvae fed sinigrin-treated D. incana leaves survived at a higher rate than those 

fed sinigrin-treated T. arvense leaves (z = 3.564, P = 0.005; Figure 4.3B, Table D.13). 

In contrast, the survival of larvae fed sinigrin-treated C. cordifolia and T. arvense leaves 
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was not different (z = 4.468, P<0.001; Figure 4.3C, Table D.13). There was significant 

variation among families, which was included in the model as a random effect (Table 

D.12). 

 

4.4 Discussion 

We demonstrated that feeding deterrents play a major role in poor performance 

on this host plant-based evolutionary trap. The distinction between pre- and post-

ingestive consequences for P. macdunnoughii larvae feeding on T. arvense emphasizes 

a role for both larval chemosensation and gut physiology in evolutionary trap 

formation, maintenance, or escape. After the first 6 h of exposure to host plants, we 

found larvae were only 80% as likely to have started feeding on T. arvense as on native 

host C. cordifolia. Among larvae that began feeding, those eating T. arvense ate more 

slowly. We also observed that the risk of dying was much higher among unfed than 

among fed neonate larvae, in both the laboratory and the field. Although toxic post-

ingestive effects may be present but masked in our data, our results suggest pre-

ingestive deterrence may contribute significantly to poor neonate survival over the first 

several hours of feeding. 

Sinigrin in T. arvense’s glucosinolate profile may contribute to pre-ingestive 

deterrence. Topical addition of sinigrin solution decreased the odds of feeding on all 

three host plants, at the same time increasing the proportion of dead, unfed larvae. 

Sinigrin addition also slowed feeding and significantly decreased survival on treated 

leaves of both native host plants.  

The Pieris genus is well-known for resistance to sinigrin, and many European 
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species are either unaffected by or attracted to high concentrations of sinigrin in the 

leaves and flowers of their food plants (Blau et al., 1978; Renwick & Lopez, 1999; 

Smallegange et al., 2007; Santolamazza-Carbone et al., 2016). Nonetheless, P. 

macdunnoughii’s sensitivity to sinigrin also occurs in at least one North American 

congener. Using a similar experimental design, Davis et al. (2015) tested Pieris 

virginiensis Edwards survival on the leaves of native host Cardamine diphylla (Michx.) 

Alph. Wood (little or no sinigrin) and non-native Brassica juncea (L.) Czern. (high 

sinigrin), treated with sinigrin solution or water. Over the entire larval stage, there was 

lower survival when feeding on sinigrin-treated leaves of sinigrin-containing non-native 

B. juncea. There was no difference in survival between treated and untreated leaves of 

the native host. However, this was primarily the result of late-instar mortality on the 

control (water) treatment. As in our study, there was considerably more neonate 

mortality on the sinigrin-treated leaves in both treatments. Native Pieris larvae may be 

most sensitive to sinigrin-based defenses in the earliest stages of development. 

Davis et al. (2015) suggested their results supported the hypothesis that the non-

native, but not the native, plants generate alternative sinigrin-derived toxic metabolites, 

including hydrogen cyanide, that negatively affected larval feeding and survival 

(Kuchernig et al., 2012; Frisch et al., 2015; Gumz et al., 2015; van Ohlen et al., 2016). 

If this pattern is generalizable to sinigrin-dominant Eurasian mustards, we expected to 

see an increase in post-ingestive effects and mortality when sinigrin was added to T. 

arvense, with little effect on the native plants. Alternative hydrolysis products are likely 

in T. arvense due to the presence of thiocyanate forming protein (TaTFP; Kuchernig et 

al., 2012). However, although feeding patterns differed across the three host plants in 
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our study, these patterns did not suggest the negative consequences of sinigrin were 

unique to T. arvense.  

The different consequences for larvae on the three host plant backgrounds 

emphasize the synergistic roles played by secondary plant chemistry in mediating larval 

feeding (Gershenzon et al., 2012; Robin et al., 2017). For example, larval feeding on D. 

incana – generally considered to be the preferred and best-quality native host (Chew, 

1975; Nakajima et al., 2013) – was least affected by the addition of sinigrin. In both the 

control and sinigrin-addition groups, all living larvae started feeding by the end of the 

6-h assay, suggesting the presence of a feeding stimulant that can overcome any 

deterrent effects of small quantities of sinigrin in the leaves (Rodman & Chew, 1980). 

Further experiments manipulating both the leaf surface glucosinolates and those within 

the leaf tissues would be beneficial to confirm deterrent or stimulant effects.  

Our post-ingestive feeding metric of relative gut fullness may be capturing 

ingestion differences caused by an unwillingness to start feeding. Pre-ingestive 

deterrents have consequences for both how rapidly larvae begin feeding and the rate at 

which feeding continues. Differences in gut fullness were not consistently associated 

with differences in willingness to start eating. Despite minimal pre-ingestive deterrence 

on sinigrin-treated D. incana leaves, there was still a significant difference in gut 

content between the two treatments after 6 h. These results show that gut fullness 

reflects feeding consequences for the larvae beyond pre-ingestive deterrence. However, 

post-ingestive consequences might include activation of sensitivity to additional 

deterrents. Glendinning (1996) determined that only after ingestion of leaf material did 

Manduca sexta (L.) neonates reject high-nicotine diets. This response happened rapidly, 
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within 30 s of feeding onset (Glendinning, 1996). More frequent observation of larvae 

over a shorter feeding timeline may help in distinguishing the nature of the post-

ingestive feeding consequences of both T. arvense and sinigrin on its own.  

Vulnerability to evolutionary traps is determined by the responses of neonate 

insects, which can change as juveniles age. Thus, deterrent or toxic effects on neonate 

insects should not be inferred from feeding tests conducted on older stages. For 

example, late-stage P. macdunnoughii were not vulnerable to T. arvense chemical 

defenses (Chew, 1975). The cardiac glycoside alliarinoside in invasive garlic mustard, 

Alliaria petiolata (M. Bieb.) Cavara & Grande, reduces consumption by P. oleracea 

neonates but has little effect on feeding in the fourth instar. Fourth-instar caterpillars, 

on the other hand, are susceptible to a flavonoid deterrent, but only on certain diet 

backgrounds (Haribal & Renwick, 1998; Renwick et al., 2001). Besides direct effects 

on larval feeding and performance, neonate experiences can shape preference and the 

ability to shift between host plants. Pieris rapae larvae can consume non-host cowpea 

foliage when transferred as neonates, but after experience feeding on mustard host 

plants they lose this diet flexibility (Renwick & Lopez, 1999). Such facultative 

monophagy is common among specialist insects and may be a function of differences in 

gut gene expression (Celorio-Mancera et al., 2012). Preferential use of late instars may 

skew our understanding of larval performance on novel plants and limit the opportunity 

to identify mechanisms underlying performance.  

Under certain conditions, insects can rapidly adapt to and escape from 

evolutionary traps posed by invasive plants, by decreasing preference for or improving 

performance on the novel resource. For example, after colonizing introduced species 
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that supported lower larval survival than native hosts, several populations of 

Euphydryas editha (Boisduval) reverted to their historical host plant associations. 

Among native insects that have rapidly increased fitness on novel hosts, E. phaeton 

larvae from invaded populations were better able to grow and survive on invasive 

Plantago lanceolata L. than were those from uninvaded populations (Bowers et al., 

1992). Congener of P. macdunnoughii, P. oleracea populations have improved 

development time and survival on invasive A. petiolata in under 20 years (Keeler & 

Chew, 2008; RA Steward, W Acuna, M Mei, RA Casagrande, FS Chew, unpubl.).  

Rapid adaptation by way of improved larval performance does not appear to be 

an evolutionary option currently available to P. macdunnoughii on T. arvense. Our 

results confirmed those of previous studies (Chew, 1975; Nakajima et al., 2013). It is 

probable we have not captured all variation in the population, but over 45 years of 

research, no larvae from Gothic townsite or surrounding populations have survived to 

pupation when fed solely on T. arvense. Complete mortality on T. arvense prior to 

adulthood suggests there is little to no fitness variation in P. macdunnoughii populations 

on which selection pressures quantified by Nakajima et al. (2013) can act. Furthermore, 

we found no evidence for differences between the invaded Gothic and uninvaded 

Quigley Creek populations. The exception was a significant main effect of population 

in the field assay, where larvae from Quigley Creek were more likely to have fed than 

Gothic larvae, regardless of host plant. These population-level differences may have 

emerged due to the increased environmental variation in the field compared to the lab. 

Temperatures in the field tended to be lower and more variable. Anecdotally, larvae and 

adult butterflies from the Gothic population tend to be less hardy than those from other 
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populations, and may have been more sensitive to field conditions, explaining why 

larvae from this population took longer to start feeding on both host plants. Although a 

comparison of only two populations cannot effectively identify patterns resulting from 

natural selection, lack of evidence for either faster onset of feeding or increased 

consumption of T. arvense in the Gothic population is consistent with expectations that 

this population is not improving larval performance on the novel host.  

In the face of rapid anthropogenic environmental change, the importance of 

predicting the eco-evolutionary outcomes of novel insect-plant interactions has been 

widely acknowledged (Reznick & Ghalambor, 2001; Pearse et al., 2013). Similarly, 

recent efforts have been made to explain conditions for susceptibility to ecological and 

evolutionary traps (Sih et al., 2011; Fletcher et al., 2012; Robertson et al., 2013, 2018). 

The overwhelming focus has been on preference over performance, perhaps because 

several well-studied evolutionary traps involve novel resources on which fitness cannot 

improve, such as ovipositing aquatic insects mistaking terrestrial surfaces that reflect 

polarized light for water (Robertson et al., 2018). In host plant-based evolutionary 

traps, however, escape through shifts in larval performance is possible, but depends in 

part on the complexity of plant defenses. Unless susceptibility to active deterrents and 

toxins is genetically correlated, a combination of defenses that target both physiology 

and behavior would constrain selection for resistance (Gould, 1984; Bernays & 

Chapman, 1987; Berenbaum & Zangerl, 1992). Simple two-locus models predict that 

evolution of insect resistance will take much longer when toxicity is accompanied by 

feeding deterrents, compared to toxicity alone (Gould, 1984, 1988). Comparisons of 

larval feeding behaviors – and the plant defenses that mediated them – in persistent and 
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escaped traps may reveal patterns of defensive complexity that could be incorporated 

into a predictive framework for escaping host plant-based evolutionary traps by 

improving larval performance.  
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4.6 Tables 

Table 4.1 Initial samples sizes in the laboratory and field assays (Ninit), the number of Pieris 

macdunnoughii larvae recovered after 4 h in the field (N4h-rec), and the number of empty or fed 

larvae that were still alive at the end of the 6-h laboratory assay (N6h-empty, N6h-fed) and the 4-h 

field assay (N4h-empty, N4h-fed), summarized by host plant and population 

  
Gothic  Quigley Creek 

Host plant Ninit N6h-empty N6h-fed  Ninit N6h-empty N6h-fed 

Thlaspi arvense (lab) 36 7 26  84 22 59 

Cardamine cordifolia (lab) 37 2 33  80 10 68 
 

Ninit N4h-rec N4h-empty N4h-fed  Ninit N4h-rec N4h-empty N4h-fed 

T. arvense (field) 83 71 22 45  79 61 10 51 

C. cordifolia (field) 76 64 14 48  82 74 8 65 
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Table 4.2 Sinigrin assay initial sample sizes (Ninit), and the number of living Pieris 

macdunnoughii larvae empty or fed after 6 h (N6h-empty, N6h-fed), summarized by host 

plant and sinigrin-addition treatment. 

  
Sinigrin  Control 

Host plant Ninit N6h-empty N6h-fed  Ninit N6h-empty N6h-fed 

Thlaspi arvense 40 14 18  29 5 22 

Cardamine cordifolia 38 6 19  31 2 26 

Descurainia incana 34 0 25  27 0 27 

 

 



www.manaraa.com

 

 

1
1

2
 

Table 4.3 ANOVA (Wald’s χ2) of model predictors for multinomial generalized linear models (GLMs) comparing the 

proportions of empty, dead, and fed larvae (larval feeding) and linear mixed models (LMMs) of relative gut fullness of 

larvae in the laboratory and field assays. 

 
Assay Predictor χ2 d.f. P 

Larval feeding Laboratory, multinomial GLM (Figure 4.1A,B, Table D.1) Host plant 31.926 2 <0.001 

Timepoint 25.287 4 <0.001 

Laboratory vs. field, multinomial GLM (Figure 4.1C,D, Table 

D.5) 

Host plant 13.667 2 0.0011 

Assay 0.164 2 0.92 

Population 5.01 2 0.082 

Assay*population 7.113 2 0.029 

Relative gut 

fullness 

Laboratory, LMM (Figure 4.1E, Table D.3) Host plant 206.274 1 <0.001 

Timepoint (adjusted) 136.237 2 <0.001 

Timepoint (adjusted)*host 

plant 

9.917 2 0.0070 

Laboratory vs. field, LMM (Figure 4.1F, Table D.6) Host plant 165.027 1 <0.001 

Assay 42.049 1 <0.001 

Host plant*assay 29.117 1 <0.001 
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Table 4.4 ANOVA (Wald’s χ2) of final model predictors for multinomial generalized linear models (GLMs) comparing the 

proportions of empty, dead, and fed larvae (larval feeding) and linear mixed models (LMMs) of relative gut fullness of 

larvae in the sinigrin addition assay. 

 
Assay Predictor χ2 df P 

Larval feeding Sinigrin addition, multinomial GLM (Figure 4.2A-C, Table D.8)  Timepoint 31.324 4 <0.001 

  Host plant 81.429 4 <0.001 

  Sinigrin addition 75.668 2 <0.001 

  Host plant*sinigrin addition 12.060 4 0.020 

Relative gut fullness Sinigrin addition, LMM (Figure 4.2D-F, Table D.10) Timepoint (adjusted) 46.397 2 <0.001 

  Host plant 100.548 2 <0.001 

  Sinigrin addition 16.800 1 <0.001 

  Host plant*sinigrin addition 11.551 2 0.0031 
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4.7 Figures 

 

 

Figure 4.1 Proportion of Pieris macdunnoughii larvae feeding on Thlaspi arvense and 

Cardamine cordifolia (A,B) after 2, 4, and 6 h in the laboratory and (C,D) in the field. 

Differences in larval feeding between Gothic (GT) and Quigley Creek (QC) larvae were 

only found in the field. Relative gut fullness (mean ± 95% confidence intervals; E) after 

2, 4, and 6 h in the laboratory and (F) after 4 h in the laboratory vs. field was averaged 

for larvae that had started eating. Boxes represent the interquartile range (IQR) with a 

horizontal line at the median and whiskers extending to the largest or smallest 

observation falling within 1.5 IQRs of the upper or lower quantiles. Asterisks indicate 

significant differences between T. arvense and C. cordifolia diets within a timepoint or 

assay type LSM multiple comparison: P<0.05). Timepoints for relative gut fullness 

measurements in the laboratory assay were adjusted for the onset of feeding.  
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Figure 4.2 Proportion of Pieris macdunnoughii larvae after 2, 4, and 6 h (A-C) feeding 

and (D-F) relative larval gut fullness on leaves of Thlaspi arvense (triangles) and native 

host plants Cardamine cordifolia (circles) and Descurainia incana (squares) treated 

with water (dashed line) or sinigrin (50 μmol g-1 dry weight; solid line). Error bars 

represent 95% confidence intervals around the mean relative gut fullness of larvae 

eating T. arvense (triangles) or C. cordifolia (circles). Boxes represent the interquartile 

range (IQR) with a horizontal line at the median and whiskers extending to the largest 

or smallest observation falling within 1.5 IQRs of the upper or lower quantiles. Outliers 

appear as black points. Asterisks indicate significant differences between sinigrin and 

control treatments at each timepoint (LSM multiple comparison: P<0.05). Timepoints 

for relative gut fullness measurements were adjusted for the onset of feeding.
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Figure 4.3 Survivorship curves of Pieris macdunnoughii larvae reared on cut (A) 

Thlaspi arvense, (B) Cardamine cordifolia, and (C) Descurainia incana leaves treated 

with sinigrin (50 μl g-1 dry leaf weight; solid line) and distilled water (control; dashed 

line). Vertical gray lines indicate the end of the 6-h assay and letters indicate significant 

differences among treatments (Cox proportional hazards, Tukey multiple comparisons: 

P<0.05). 
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CHAPTER V:  

CONCLUSION 

 

As described in Chapter I, both rapid adaptation and phenotypic plasticity can 

facilitate escape from resource-based traps via decreased preference or improved 

exploitation. Yet, previous research on oviposition by Pieris macdunnoughii females on 

the lethal invasive mustard Thlaspi arvense has not identified any response – adaptive 

or plastic – to the presence of the invasive plant. I set out to evaluate potential 

constraints leading to the persistence of this maladaptive behavior, demonstrating that 

while preference for the nonnative host over the native host is heritable and varies 

considerably in the population (Chapter II), it is unlikely that this preference is 

correlated with preference for native hosts with a similar defense chemical profile 

(Chapter III). Thus, neither a lack of heritable genetic variation nor an increased risk of 

excluding good host plants when avoiding T. arvense are likely to be constraining 

escape from this evolutionary trap.  

Both Chapter II and III suggest considerable environmental variance associated 

with oviposition preference, from the lack of any significant additive genetic variance 

when choosing between plant methanol extracts to modifications in preference after 

experiencing specific host plants. These results provoke the question, how is behavioral 

plasticity mediating interactions with the invasive plant in the wild? In chapter III, 

experience with a set of native hosts clearly decreased subsequent preference for T. 
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arvense. In the wild, experienced-based preference plasticity will have to arise through 

trial-and-error sampling of the available resources. Rather than a direct reward as with 

nectar foraging, ‘good’ host plants are reinforced by the presence of additional contact 

cues that strengthen innate preferences. Although chapter III demonstrates 

modifications to preference are possible, the temporal and spatial scale over which they 

might occur in the wild are still unclear. It is also uncertain whether this behavioral 

plasticity might arise due to cue processing or cue sensitivity, whether in restricted 

sensitivity to the gustatory cues of T. arvense or increased sensitivity to other 

characteristics of the plant.  

Consistent with the hypothesis that oviposition experience in the field modifies 

preference, results from Chapter II and additional preference assays suggest that field-

collected butterflies from invaded areas are more likely to lay eggs on T. arvense, in 

contrast to the expectation that selection imposed by the lethal plant would increase 

female avoidance in these populations. This pattern may be the result of butterflies 

modifying innate preferences based on plants encountered frequently in the first several 

days after eclosion. We have also seen that lab-reared butterflies often have much more 

even preference for T. arvense and C. cordifolia than do wild-caught butterflies.  

Even though phenotypic plasticity can operate as a partial, temporary escape 

from this evolutionary trap, it can also slow rapid evolution in response to selection. 

Furthermore, it can interact with other evolutionary constraints to maintain maladaptive 

genotypes in the population. Chew (1977) was the first to point out that migration of P. 

macdunnoughii from naïve populations into invaded populations may be enough to 

swamp out the selection pressures introduced by T. arvense. The impacts of this 
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migration-selection balance would be amplified by preference plasticity. As Nakajima 

et al (2013, 2015) showed, the fitness consequences of T. arvense invasion arise from 

combination of its abundance, its proximity to native hosts, and the probability that a 

female butterfly encounters it during early oviposition sampling events. Experience-

modified preference would decrease the selection differential within invaded 

populations and would increase the migration load, the number of maladaptive 

genotypes introduced by migration (Bolnick & Nosil 2007). Butterflies dispersing from 

naive areas will be more likely to prefer native plants because all prior oviposition 

experience has been on native plants. This modified preference would mimic the 

beneficial phenotype (rejection of T. arvense) in the invaded population. However, 

offspring of these butterflies would be more likely to have the costly phenotype 

(accepts T. arvense). Under equilibrium forces (constant migration, constant selection), 

the effect of migration with preference plasticity should be equal to migration without 

this plasticity, but in a system with fluctuating migration and selection, this plasticity 

could significantly reduce the frequency of the locally beneficial rejection phenotype.  

It would be tidy to conclude that sinigrin is the pivotal player in this 

evolutionary trap. It is at the center of its very own preference-performance mismatch, 

clearly acting as an oviposition stimulant when in isolation (Chapter III) and 

compromising larval feeding and survival (Chapter IV). But this is misleading. While 

sufficient for egg-laying, it is not necessary and does not override other beneficial cues. 

Nor does preference for sinigrin appear to mediate preference for sinigrin-containing 

plants. Future research should evaluate the role of non-glucosinolate plant components 

on both adult preference and larval feeding, and how they work in concert with 
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glucosinolate mixtures to mediate interactions with T. arvense and other mustard food 

plants.  

In addition to neonate deterrence, the key to larval performance on T. arvense 

may lie in its ability to produce diverse hydrolysis products from its deceptively simple 

glucosinolate profile. Following hydrolysis by myrosinase, glucosinolates 

spontaneously rearrange to form isothiocyanates. If the rearrangement is catalyzed by a 

specifier protein, however, the reaction may alternatively form nitriles (promoted by 

nitrile specifier protein, NSP), epithionitriles (epithiospecifier protein, ESP, but only for 

alkenyl glucosinolates, otherwise ESPs just produce nitriles) or thiocyanates 

(thiocyanate specifier protein, TFP; Lambrix et al. 2001; Wittstock and Burow 2007). 

While the origin of both NSP and ESP appear to predate the radiation of the core 

Brassicaceae, TFPs have only been identified in a few species, including T. arvense. Of 

the other two species, both can also be described as specializing on a single 

glucosinolate. Lepidium sativum produces mainly glucotropaeolin 

(benzylglucosinolate), Alliaria petiolata, a member of the Thlaspidae tribe, is 

dominated by sinigrin (allylglucosinolate). The TFPs in these plants are highly structure 

specific (Burow et al. 2006; Kuchernig et al. 2011; Eisenschmidt‐Bönn et al. 2019), and 

the thiocyanates they produce can be degraded into additional toxic compounds (Frisch 

et al. 2015).  

The radiation and success of Brassicaceae species has often been attributed to 

the proliferation of different glucosinolate structures (Edger et al. 2015, 2018). These 

mustard species present an alternative strategy for success, investing heavily in a single 

glucosinolate and relying on the alternative hydrolysis products for defense. Further 
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exploration of these alternative products will be important to understanding the 

physiological consequences of consuming T. arvense for P. macdunnoughii larvae and 

may also shed light on how defensive novelty can exploit existing deterrent responses 

and present new physiological hurdles to insect herbivores.  

Whatever the basis for poor P. macdunnoughii performance, T. arvense does not 

pose problems for all Pieris larvae. The northern European congeners Pieris rapae and 

P. napi survive perfectly well on T. arvense (Forsberg 1987; Friberg et al. 2015). This 

difference provokes the question, was the ability to eat T. arvense gained in the northern 

European species after the Holarctic expansion of this species complex, or was it lost in 

the North American species as they began to specialize on suites of North American 

mustard? Placing maladaptive plant-insect interactions within a phylogenetic 

framework will help to elucidate how shared evolutionary history with putatively novel 

plants explain susceptibility to host plant-based evolutionary traps. A first step to 

answering this question – currently underway – will be to determine the genetic basis 

for P. macdunnoughii’s inability to eat T. arvense. With this information, it will be 

possible to compare allele frequencies, expression levels and associated feeding 

phenotypes within and between Northern European, Siberian and North American 

species in the Pieris napi species complex. Patterns of conservation or loss of major 

effect loci may reveal whether the ability to eat T. arvense is ancestral and could 

identify populations that are safeguarded against T. arvense invasion by relict 

polymorphisms for successful development on the invasive plant (Bowden 1979).  
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APPENDIX A: 

 AN INTRODUCTION TO PIERINE SPECIALIZATION ON 

GLUCOSINOLATES 

 

Glucosinolates are secondary defensive metabolites produced by plants in the 

order Brassicales and convergently in the distant genus Drypetes (Putranjivaceae, 

Malpighiales; Rodman et al. 1998; Edger et al. 2015, 2018). Glucosinolates are 

degraded by myrosinase enzymes – also synthesized and stored by the plants – into 

‘mustard oils’: primarily isothiocyanates, but also thiocyanates and nitriles as mediated 

by specifier proteins (Agerbirk and Olsen 2011; Kuchernig et al. 2011, 2012; Frisch et 

al. 2015). Glucosinolate compounds, of which there are more than 130 believed to 

occur naturally, have a common central thioglucoside structure and a side chain that 

differs based on its amino acid precursor and various chain elongation steps in the 

biosynthetic pathway (Agerbirk and Olsen 2011). Side chain differences affect the 

volatility and toxicity of isothiocyanates. Insect consume glucosinolates in immense 

quantities when feeding on species in the Brassicales (although the compounds and 

toxicities vary widely). The putative insecticidal activity of isothiocyanates is 

disruption of proteins by conjugation to nucleophilic residues (Winde and Wittstock 

2011). Nevertheless, there are many specialist and generalist herbivorous insects that 

feed glucosinolate-producing plants.  
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In intact tissues, myrosinases are stored in small pockets. Although 

glucosinolates are expressed constitutively, mechanical damage to the plant is necessary 

for glucosinolates to be degraded into toxic isothiocyanates, making it an especially 

effective defense against chewing insects (Hopkins et al. 2009; Agerbirk and Olsen 

2011; Winde and Wittstock 2011). Key innovations for herbivore resistance to the 

mustard oil bomb have not only allowed the exploitation of a well-defended clade of 

plants, but in some cases have facilitated adaptive radiations (Wheat et al. 2007; Edger 

et al. 2015).  

The key mechanism that allowed pierine butterflies to transition from their 

ancestral host plants in the order Fabales onto glucosinolate-producing Brassicales 

targeted the myrosinase-dependent hydrolysis of glucosinolates (Wittstock et al. 2004; 

Wheat et al. 2007; Edger et al. 2015). Following hydrolysis by myrosinase, aglycones 

are rerouted to form nitriles by a protein expressed in the larval midgut: nitrile specifier 

protein (NSP; Wittstock et al. 2003). Subsequent studies have found additional 

downstream steps that help larvae convert and excrete glucosinolate hydrolysis 

products and that the efficacy of NSP resistance varies across individuals and species of 

host plants (Burow et al. 2006; Agerbirk et al. 2007; Stauber et al. 2012; van Ohlen et 

al. 2016). 

Despite the NSP innovation, pierine butterflies like P. macdunnoughii struggle 

to feed on certain mustards (Keeler and Chew 2008; Davis and Cipollini 2014). The 

basis for larval success might depend on deterrence, toxicity or both (Frisch et al. 2015; 

Müller et al. 2015; Steward et al. 2019). Both glucosinolates and their hydrolysis 

products have been found to act as feeding deterrents for different Pieris species 
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(Müller et al. 2015; Steward et al. 2019). Unlike adult butterflies, larvae primarily taste 

with their mouths, using sensilla on the maxillae and epipharynx (Schoonhoven and van 

Loon 2002). Neurons enervating the medial and lateral sensilla styloconicum – a highly 

conserved structure on the maxilla – are involved in feeding responses to glucosinolates 

and their hydrolysis products (Du et al. 1995; van Loon and Schoonhoven 1999; 

Schoonhoven and van Loon 2002; Müller et al. 2015). Deterrent responses to novel 

host plant are likely to depend on preadapted receptors, neural processing and cue-

response behaviors (Dethier 1980).  

Different mustard species may also present novel toxic defenses. For example, 

toxicity of garlic mustard (A. petiolata) to North American Pieris species is partly due 

to the presence of glucosinolate-derived cyanogenic glucosides (ex. alliarinoside) 

(Frisch et al. 2014; Davis et al. 2015). Garlic mustard is also known to produce 

hydrogen cyanide from allyl-glucosinolate (sinigrin, 2-propenyl glucosinolate), guided 

by a thiocyanate forming protein (TFP) (Frisch et al. 2015). A similar process occurs in 

T. arvense (Kuchernig et al. 2011). An efficient detoxification strategy for 

glucosinolate-derived hydrogen cyanide has been identified in the generalist (relative to 

other butterflies in the genus) P. rapae (van Ohlen et al. 2016). It is unclear whether the 

β-cyanoalanine synthase involved in this process are shared with P. napi, or by any of 

the North American Pieris.  
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APPENDIX B: 

CHAPTER II SUPPLEMENTARY INFORMATION 

 

B.1 Tables 

Table B.1. Collection sites for Thlaspi arvense and Cardamine cordifolia plants used in 

choice assays.   
 

Year Plant Dates Location Latitude oN Longitude oE 

1997 C. cordifolia 6/23/1997 

6/24/1997 

7/19/1997 

South Gothic (SG) 38.955442 -106.985915 

8/17/1997 Schofield Pass 39.016578 -107.047588 

T. arvense 6/23/1997 

6/25/1997 

Snodgrass Trailhead 38.919119 -106.960338 

7/19/1997 Kettle Ponds 38.942863 -106.975173 

NA Sprouted from seeds collected 

at Gothic, CO 

NA NA 

2006 C. cordifolia Multiple South Gothic (SG) 38.955442 -106.985915 

T. arvense Multiple Snodgrass Trailhead 38.919119 -106.960338 

2015 C. cordifolia 6/14/2015 N. Judd Falls Trailhead 38.968579 -106.994234 

T. arvense 6/14/2015 Snodgrass Trailhead 38.919119 -106.960338 
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Table B.2. Glucosinolates detected both by diode array detection (DAD) and charged anion detection (CAD). Glucosinolates were 

identified by mass spectra and comparative retention times.  
 

Num.a Common Nameb Chemical name Classc dMWd 

RT(minutes) 

DAD (CAD) 

24a Progoitrin (STD) 2(R)-2-Hydroxy-3-butenyl D 309 5.2   (5.3) 

30 1-Hydroxymethylpropyl 1-(Hydroxymethyl)propyl E 311 6.2   (6.3) 

107 Sinigrin 2-Propenyl D 279 7.1   (7.2) 

56 Glucoputranjivin 1-Methylethyl (isopropyl) C 281 12.2 (12.3) 

12 Gluconapin 3-Butenyl D 293 13.9 (14.0) 

62 Glucoconringian (Isobutyl) 2-Methylpropyl C 295 15.7 (15.8) 

61 Glucocochlearin (sec-Butyl) 1-Methylpropyl C 295 16.8 (16.9) 

40 Glucobarbarin 2(R)-Hydroxy-2-phenylethyl G 359 17.8 (17.9) 

66 Glucoibarin 7-(Methylsulfinyl)heptyl A 399 19.2 (19.3) 

11 Glucotropeaolin Benzyl G 329 19.9 (20.0) 

43 Glucobrassicin Indol-3-ylmethyl I 368 22.4 (22.5) 

10 Glucohirsutin 8-(Methylsulfinyl)octyl A 413 23.7 (23.8) 

11 Gluconasturtiin 2-Phenylethyl G 343 25.9 (26.0) 

NA Unidentified possible: Cysteine disulfanyl propyl (A) 432 29.8 (29.9) 

a Structure-based number (Fahey et al. 2001) 

b (Fahey et al. 2001; Clarke 2010) 

c Chemical class:  A – Sulfur-containing side-chains; C – Aliphatic, branched chain; D – Olefins; E – Aliphatic alcohols (straight and 

branched chain); G – Aromatic; I – Indole (Fahey et al. 2001; Clarke 2010) 

d desulfoglucosinolate molecular weight 
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Table B.3. Hierarchical simplification of environmental and generational variation in 

1997. The proportion of eggs laid on T. arvense was square-root transformed. Nested 

models were compared using corrected AIC and likelihood ratio tests. 
 

Model AICc F df P-value 

Generation * Start day  3078.4 NA NA NA 

Generation + Start day 3165.0 1.981 2 0.143 
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Table B.4. Hierarchical simplification of environmental and generational variation in 

2006. The proportion of eggs laid on T. arvense was square-root transformed. Nested 

models were compared using corrected AIC and likelihood ratio tests.  

 
Model AICc χ2 df P-

value 

Generation * Start day * Paternal latitude 12.94    

Generation * Start day + Generation * Paternal latitude + Start day * 

Paternal latitude 

17.10 8.80 2 0.012 

Generation * Start day + Start day * Paternal latitude  12.89 0.31 2 0.855 

Generation * Start day + Paternal latitude 11.54 0.89 1 0.346 

Generation * Start day 11.81 2.47 1 0.116 

Generation + Start day 17.14 9.64 2 0.008 
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Table B.5. Hierarchical simplification of environmental and generational variation in 2015. The response variable was proportion of 

eggs laid on T. arvense treated disks, untransformed. Nested models were compared using corrected AIC and likelihood ratio tests. 
 

Model AICc χ2 df p-value 

Generation/Diapause * Start day * Paternal latitude -94.27    

Generation/Diapause * Start day + Generation/Diapause * Paternal latitude + Generation * Start day * 

Paternal latitude 

-97.49 1.90 2 0.387 

Generation/Diapause * Paternal latitude + Generation * Start day * Paternal latitude -102.06 0.43 2 0.807 

Generation/Diapause + Generation * Start day * Paternal latitude -106.09 0.83 2 0.661 

(Generation/Diapause) + Generation * Start day + Generation * Paternal latitude + Start day * Paternal 

latitude 

-110.02 0.82 2 0.665 

Generation/Diapause + Generation * Paternal latitude + Start day * Paternal latitude  -114.16 0.49 2 0.781 

Generation/Diapause + Start day * Paternal latitude  -117.98 0.70 2 0.704 

Generation/Diapause + Start day + Paternal latitude -119.66 0.53 1 0.459 

Generation + Start day + Paternal latitude -120.61 3.41 2 0.182 

Generation + Paternal latitude -120.14 2.61 1 0.106 

Start day + Paternal latitude -119.08 5.79 2 0.055 

Generation + Start day -118.24 4.52 1 0.034 
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B.2 Figures 

 
 

Figure B.1. Wild-caught P. macdunnoughii female with eggs on filter paper treated with MeOH 

leaf extract in 2015 (credit: C. Cerrilla).  
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Figure B.2. Correlations between the proportion of eggs laid by daughters and their 

mothers (A, C, E; Gray circles = F1 daughters, black circles = F2 daughters), and by 

granddaughters and their paternal grandmothers (B, D, F). Dashed lines represent 

marginally nonsignificant correlations (p<0.1) while dotted lines are nonsignificant. 

Neither relatedness nor spatial temporal variation found to significantly affect preference 

were accounted for, so results do not reflect dmm heritability estimates.  
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APPENDIX C: 

CHAPTER III SUPPLEMENTARY INFORMATION 
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C.1 Tables 

Table C.1. Diode array detection (DAD) and charged anion detection (CAD) retention times (RT) of glucosinolates (GSLs) found 

in Cardamine cordifolia, Descurainia incana and Thlaspi arvense leaf samples.  

 

Numa GSL common nameb GSL structural name Classc desulfoMWc 

RT(min) 

DAD (CAD) 

2015 

RT (min) 

DAD(CAD) 

2017 

24a Progoitrin (STD) 2(R)-2-Hydroxy-3-butenyl D 309 5.22 (  5.33) 3.70 (3.82) 

24b Epiprogroitrin (STD) 2(S)-2-Hydroxy-3-butenyl D 309 NA 4.27 (4.38) 

30 1-Hydroxymethylpropyl 1-(Hydroxymethyl)propyl E 311 6.18 (  6.30) NA 

107 Sinigrin 2-Propenyl D 279 7.14 (  7.24) 4.97 (5.11) 

31 Glucoconringiin 2-Hydroxy-2-methylpropyl E 311 - (10.8) NA 

56 Glucoputranjivin 1-Methylethyl C 281 12.2 (12.3) 8.79 (8.89) 

12 Gluconapin 3-Butenyl D 293 13.9 (14.0) 11.2(11.4) 

62 Glucoconringian (Isobutyl) 2-Methylpropyl C 295 15.7 (15.8) 13.2 (13.3) 

61 Glucocochlearin (sec-Butyl) 1-Methylpropyl C 295 16.8 (16.9) 14.3 (14.4) 

40 Glucobarbarin 2(R)-Hydroxy-2-phenylethyl G 359 17.8 (17.9) 15.2 (15.3) 

66 Glucoibarin 7-(Methylsul®nyl)heptyl A 399 19.2 (19.3) 16.8 (16.9) 

11 Glucotropeaolin Benzyl G 329 19.9 (20.0) 17.2 (17.3) 

101 Glucobrassicanapin 4-pentenyl D 307 NA 17.3 (17.4) 

43 Glucobrassicin Indol-3-ylmethyl I 368 22.4 (22.5) 19.6 (19.7) 

10 Glucohirsutin 8-(Methylsulfinyl)octyl A 413 23.7 (23.3) 21.3 (21.4) 

11 Gluconasturtiin 2-Phenylethyl G 343 25.9 (26.0) 23.3 (23.4) 

a Structure-based number (Fahey et al. 2001) 

b (Fahey et al. 2001; Clarke 2010) 

c Chemical class:  A – Sulfur-containing side-chains; C – Aliphatic, branched chain; D – Olefins; E – Aliphatic alcohols (straight and branched chain); G – 

Aromatic; I – Indole (Fahey et al. 2001; Clarke 2010) 

d desulfoglucosinolate molecular weight  

NA : none/ not applicable 
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Table C.2. Detected glucosinolates and total leaves sampled for chemical analysis in 

2015 and 2017.  

 

Plant GSL Class 
Detected (Total samples) 

2015 2017 

C. cordifolia Glucoibarin A 9 (15) 3 (5) 

C. cordifolia Glucohirsutin A 11 (15) 4 (5) 

C. cordifolia Glucoputranjivin C 14 (15) 5 (5) 

C. cordifolia Glucoconringian C 14 (15) 4 (5) 

C. cordifolia Glucocochlearin C 14 (15) 5 (5) 

C. cordifolia 1-Hydroxymethylpropyl E 15 (15) 1 (5) 

C. cordifolia Glucobarbarin G 11 (15) 2 (5) 

C. cordifolia Glucotropaeolin G 10 (15) 2 (5) 

C. cordifolia Gluconasturtiin G 14 (15) 3 (5) 

C. cordifolia Glucobrassicin I 14 (15) 5 (5) 

D. incana Glucoconringian C 1 (4) 14 (14) 

D. incana Glucobrassicanapin D 3 (4) 13 (14) 

D. incana Sinigrin D 3 (4) 14 (14) 

D. incana Gluconapin D 4 (4) 14 (14) 

D. incana Glucotropaeolin G 3 (4) 0 (14) 

D. incana Gluconasturtiin G 0 (4) 1 (14) 

T. arvense Sinigrin D 14 (14) 5 (5) 

T. arvense Gluconapin D 6 (14) 5 (5) 

T. arvense Glucotropaeolin G 14 (14) 5 (5) 
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Table C.3. Hierarchical simplification of binomial generalized linear mixed models (BGLMMs) and linear mixed models (LMMs) 

evaluating differences in the presence and total quantities of GSL structures and classes in C. cordifolia, D. incana, and T. arvense 

in 2015 and 2017. Models were compared using AICc, BIC and likelihood ratio tests between nested models. 

  
Model Response Fixed effects Random 

effects 

AICca BICb χ2 d.f. P-

value 

BGLMM Presence/absence of GSL 

structure 

Plant * GSL * Year Sample ID 367.6 710.8 NA NA NA 

Plant * GSL + Plant * Year + GSL * Year Sample ID 327.0 570.3 17.7 24 0.815 

Plant * GSL + GSL * Year Sample ID 329.2 564.0 6.8 1 0.033 

Plant * GSL + Plant * Year + GSL * Year NA 350.1 589.2 25.4 1 <0.001 

LMM Log2[GSL quantity (µmol g-1 

dry leaf)] 

Plant * GSL * Year Sample ID 785.8 911.2 NA NA NA 

Plant * GSL + Plant * Year + GSL * Year Sample ID 797.0 916.6 14.0 2 <0.001 

Plant * GSL * Year NA 782.5 905.0 7.22 1 0.007 

BGLMM Presence/absence of GSL class Plant * Class * Year Sample ID 129.4 261.2 NA NA NA 

Plant * Class + Plant * Year + Class * Year Sample ID 104.9 203.0 <0.001 10 <0.999 

Plant * Class + Class * Year Sample ID 98.4 189.6 <0.001 10 <0.999 

Plant * Class + Year Sample ID 134.9 208.6 48.0 5 <0.001 

Plant * Class + Class * Year NA 121.5 209.3 25.5 1 <0.001 

LMM Log2[GSL class quantity 

(µmol g-1 dry leaf)] 

Plant * Class * Year Sample ID 414.2 481.2 NA NA NA 

Plant * Class + Plant * Year + Class * Year Sample ID 412.2 474.3 0.372 2 0.833 

Plant * Class + Plant * Year Sample ID 437.6 486.9 40.4 5 <0.001 

Plant * Class + Plant * Year + Class * Year NA 406.1 465.6 14.1 1 <0.001 

a Corrected Akaike’s Information Criterion 

b Bayesian Information Criterion 

NA: none/ not applicable 
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Table C.4. Analysis of deviance (Wald’s χ2 type II) and analysis of variance (F-test) 

comparisons of best fit models (Table C.3) of the presence of different GSL classes and 

total quantities of GSL classes in C. cordifolia, D. incana, and T. arvense in 2015 and 

2017. The presence of glucosinolate compounds was compared using a binomial 

generalized linear mixed model (GLMMs) while log-transformed GSL quantities were 

compared using a linear mixed model.  

 
Model Response Predictor χ2 d.f. P-

value 

BGLMM Presence/absence of GSL class Plant 0.449 2 0.799 

Class 0.441 6 0.993 

Year 0.038 1 0.844 

Plant * Class 0.0439 10 >0.999 

Class * Year 0.404 5 0.995 

   F d.f. P-

value 

LMM GSL class quantity (µmol g-1 dry leaf) Plant 183 2,150 <0.001 

Class 190 5,150 <0.001 

Year 32.6 1,150 <0.001 

Plant * Class 11.1 4,150 <0.001 

Plant * Year 18.0 2,150 <0.001 

Class * Year 5.29 5,150 <0.001 
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Table C.5. Hierarchical simplification of negative binomial generalized mixed models (NBGLMMs), multinomial models, and 

quasibinomial generalized linear models (QBGLM) comparing preferences of butterflies for fi lter paper disks treated with different 

GSL compounds (1mM solution), increasing sinigrin concentrations in 2016 and 2017, and 25mM sinigrin with or without 

myrosinase added. Mass-wear residuals and wing wear were included as covariates. Only butterflies laying at least two eggs were 

included in the analyses. We selected the model that minimized AICc and BIC and was not significantly different from the next  

largest model. 

 

Assay Model Response Fixed effects Random effects AICc BIC χ2 d.f. P-value 

GSL 

compounds 

NBGLMM Eggs GSL * mass-wear residual * wing wear Butterfly ID 213.0 221.8 NA NA NA 

GSL * mass-wear residual + GSL * wing wear + 

mass-wear residual * wing wear 

Butterfly ID 205.2 

 

215.3 0.949 2 0.622 

GSL * mass-wear residual + GSL * wing wear  Butterfly ID 202.6 212.9 1.41 1 0.235 

GSL * mass-wear residual + wing wear Butterfly ID 199.2 209.2 3.75 2 0.154 

GSL * mass-wear residual Butterfly ID 196.1 205.6 0.152 1 0.697 

GSL + mass-wear residual Butterfly ID 193.7 201.7 3.56 2 0.169 

GSL Butterfly ID 190.9 198.0 0.001 1 0.970 

1 Butterfly ID 209.2 213.8 23.3 2 <0.001 

GSL NA 194.7 200.5 6.32 1 0.012 

Multinomial Eggs Mass-wear residual * Wing wear NA 289.3 315.5 NA NA NA 

Mass-wear residual + Wing wear NA 287.5 307.3 2.53 2 0.282 

Mass-wear residual NA 287.9 301.2 4.56 2 0.100 

1 NA 297.0 303.7 13.2 2 0.001 

Sinigrin 

concentration 

(conc.) 

NBGLMM Eggs 

(2016) 

Log2(conc.) * mass-wear residual + Log2(conc.) * 

wing wear 

Butterfly ID 350.5 366.4 NA NA NA 

  Log2(conc.) * mass-wear residual + wing wear Butterfly ID 348.9 363.1 0.965 1 0.326 

   Log2(conc.) + mass-wear residual + wing wear Butterfly ID 346.5 358.8 0.039 1 0.843 

   Log2(conc.) + wing wear Butterfly ID 344.2 354.7 0.125 1 0.724 

   Log2(conc.) Butterfly ID 343.7 352.2 1.77 1 0.184 

   1  Butterfly ID 394.1 400.6 52.7 1 <0.001 

   Log2(conc.)  NA 355.0 361.5 13.61 1 <0.001 
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  Eggs 

(2017) 

Log2(concentration)  Butterfly ID 281.4 287.5 NA NA NA 

  1 Butterfly ID 283.1 287.8 4.15 1 0.042 

  Log2(concentration)  NA 291.2 296.0 12.3 1 <0.001 

Sinigrin + 

Myrosinase 

NBGLMM Eggs Treatment * mass-wear residual * wing wear Butterfly ID 329.0 346.0 NA NA NA 

Treatment * mass-wear residual + treatment * wing 

wear + mass-wear residual * wing wear 

Butterfly ID 322.4 338.7 0.638 2 0.727 

Treatment * wing wear + mass-wear residual  Butterfly ID 317.4 331.2 0.483 3 0.214 

Treatment + mass-wear residual + wing wear Butterfly ID 315.8 327.3 4.03 2 0.134 

Treatment + wing wear Butterfly ID 313.1 323.3 0.012 1 0.914 

Treatment Butterfly ID 310.9 319.6 0.321 1 0.571 

1 Butterfly ID 985.1 990.6 679 2 <0.001 

Treatment NA 312.6 319.7 4.11 1 0.043 

QBGLM  Eggs Mass-wear residual * wing wear NA NA NA NA NA NA 

Mass-wear residual + wing wear NA NA NA 3.79 1 0.400 

Mass-wear residual NA NA NA 0.029 1 0.941 

1 NA NA NA 0.475 1 0.921 

NA: none/ not applicable 
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Table C.6. Hierarchical simplification of negative binomial generalized linear (mixed) models (NBGLM, NBGLMM) for the 

number of eggs laid on C. cordifolia leaves treated with sinigrin (sinigrin rejection assay) and the number of eggs laid on sinigrin-

containing host plants (Assay: D. incana or T. arvense). We selected the model that minimized AICc and BIC and was not 

significantly different from the next largest model. 

 
Assay Model Response Fixed effects Random Effects AICc BIC χ2 (F) d.f. P-

value 

Sinigrin 

rejection 

NBGLM Eggs Log2(total eggs) * mass-wear residual * age NA 552.5 571.8 NA NA NA 

Log2(total eggs) * mass-wear residual + log2(total 

eggs) * age + mass-wear residual * age 

NA 554.1 571.5 4.15 1 0.042 

Log2(total eggs) * age + mass-wear residual * age NA 551.7 567.1 0.022 1 0.883 

Log2(total eggs) + mass-wear residual * age NA 549.3 562.7 0.027 1 0.869 

Log2(total eggs) + mass-wear residual + age  NA 548.4 559.7 1.348 1 0.246 

Log2(total eggs) + age NA 546.1 555.2 0.002 1 0.968 

Log2(total eggs)  NA 544.2 551.2 0.331 1 0.565 

1 NA 647.9 652.6 105.9 1 <0.001 

Sinigrin 

host plant 

preference 

NBGLMM Eggs Log2(total eggs) * assay * order * prop. eggs (sin rej.) Order/ butterfly 

ID 

889.5 933.6 NA NA NA 

  Log2(total eggs) * assay * order * prop. eggs (sin rej.) Order 886.6 928.9 <0.001 1 >0.999 

  Log2(total eggs) * assay * order * prop. eggs (sin rej.) NA 883.8 924.2 <0.001 1 >0.999 

   Log2(total eggs) * assay * order + log2(total eggs) * 

assay * prop. eggs (sin rej.) + log2(total eggs) * order 

* prop. eggs (sin rej.) + assay * order * prop. eggs 

(sin rej.) 

NA 882.3 920.7 1.285 1 0.257 

   Log2(total eggs) * assay * order + log2(total eggs) * 

assay * prop. eggs (sin rej.) + assay * order * prop. 

eggs (sin rej.) 

NA 880.0 916.3 0.383 1 0.536 

   Log2(total eggs) * assay * order + log2(total eggs) * 

assay * prop. eggs (sin rej.) + order * prop. eggs (sin 

rej.) 

NA 878.0 912.2 0.606 1 0.436 

   Log2(total eggs) * assay * order + log2(total eggs) * 

assay * prop. eggs (sin rej.) 

NA 875.8 907.9 0.423 1 0.515 
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   Log2(total eggs) * assay * order + log2(total eggs) * 

prop. eggs (sin rej.) + assay * prop. eggs (sin rej.) 

NA 875.4 905.3 2.134 1 0.144 

   Log2(total eggs) * assay * order + log2(total eggs) * 

prop. eggs (sin rej.)  

NA 873.3 901.0 0.470 1 0.493 

   Log2(total eggs) * assay * order + prop. eggs (sin rej.) NA 872.5 897.8 1.600 1 0.206 

   Log2(total eggs) * assay * order NA 870.1 893.1 0.014 1 0.907 

   Log2(total eggs) *assay + log2(total eggs) *order + 

assay * order 

NA 871.9 892.5 4.105 1 0.043 

   Log2(total eggs) *assay + assay * order NA 870.8 889.0 1.26 1 0.261 

   Log2(total eggs) + assay * order NA 869.8 885.5 1.29 1 0.255 

   Log2(total eggs) + assay + order NA 877.1 890.3 9.48 1 0.002 

NA: none/ not applicable
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Table C.7. Tukey’s multiple comparison of model estimates (Table C.6) of number of 

eggs laid on sinigrin-containing host plants (D. incana or T. arvense) in simultaneous 

choice assays, where butterflies were either tested on D. incana first (DT) or T. arvense 

first (TD) before being tested on the second assay. Ratio and standard error (SE) 

estimates were calculated on the log-scale for the mean number of total eggs laid by 

butterflies in all assays (58.8 eggs), accounting for dispersion (1.8367). P-values were 

adjusted using Tukey’s method for a family of four estimates.  

 
Contrast Ratio SE z-ratio P-value Sig.  

D. incana (DT) – T. arvense (DT)  3.688 1.152 4.178 <0.001 *** 

D. incana (DT) – D. incana (TD) 1.409 0.442 1.093 0.694  

D. incana (DT) – T. arvense (TD) 1.721 0.437 2.140 0.141  

D. incana (TD) – T. arvense (DT) 0.382 0.145 -2.543 0.054 • 

D. incana (TD) – T. arvense (TD) 0.467 0.154 -2.303 0.097 • 

T. arvense (DT) – T. arvense (TD)  1.221 0.405 0.603 0.931  

NA: none/ not applicable 
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Table C.8. Hierarchical simplification of quasibinomial generalized linear (QBGLMs) for the relative proportion of eggs laid on 

sinigrin containing host plants in the second assay as a function of the proportion laid in the first assay. We selected the simplest 

model that was not significantly different from the next largest model. 

 
Assay Model Response Fixed effects Deviance d.f. P-value 

Sinigrin 

host plant 

preference 

QBGLMM Prop. eggs on sinigrin-

containing host (second 

assay)  

Order * prop. eggs (first assay) * mass-wear residual NA NA NA 

Order * prop. eggs (first assay) + order * mass-wear residual + prop. 

eggs (first assay) * mass-wear residual 

11.4 2 0.620 

Order * mass-wear residual + prop. eggs (first assay) * mass-wear 

residual 

14.7 2 0.539 

Order * mass-wear residual + prop. eggs (first assay 31.1 2 0.270 

Order * mass-wear residual 18.5 2 0.460 

Order + mass-wear residual 23.2 1 0.162 

Order 26.7 1 0.134 

1 191.4 1 <0.001 

NA: none/ not applicable 

 



www.manaraa.com

 

166 

C.2 Figures 

 

 

 

Figure C.1. Set-up of clear plastic oviposition arenas using filter 

paper disks (right) or whole plants in flower picks.  
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Figure C.2. Butterflies laid equal numbers of eggs on untreated C. 

cordifolia leaves and leaves treated with 100uL of 25mM sinigrin. The 

number of eggs laid on the sinigrin-treated leaf was unaffected by either 

age or mass-wear residual of individual butterflies (Table C.6). Dashed 

lines have a slope of 1 and 0.5, indicating 100% and 50% preference for 

sinigrin-treated leaves, respectively.  
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APPENDIX D: 

CHAPTER IV SUPPORTING INFORMATION 

 

D.1 Tables 

Table D.1 Hierarchical simplification of multinomial generalized linear model (GLM) 

of larval feeding in the laboratory assay. Wald’s χ2 values indicate comparisons with the 

next largest model. The final model is indicated in bold. 

 
Fixed effects AIC χ2 d.f. P-value 

Timepoint*host plant*population 918.84 NA NA NA 

Timepoint*host plant + time*population + host plant*population 912.19 1.352 4 0.85 

Timepoint*host plant + host plant*population 904.73 0.543 4 0.97 

Timepoint*host plant + population 900.80 0.061 2 0.97 

Timepoint + host plant + population 897.51 4.717 4 0.32 

Time + host plant 896.93 3.420 2 0.18 

AIC, Akaike’s information criterion; NA, no comparison  
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Table D.2 Hazard ratios and 95% confidence intervals (95% CI) for transitioning from 

empty to dead, empty to fed, and fed to dead for larvae on Thlaspi arvense compared to 

those on Cardamine cordifolia. Hazard ratios were calculated over the entire assay 

period. Confidence intervals were calculated by randomly sampling (1000 samples) the 

assumed multivariate normal distribution of the likelihood estimates and covariance 

matrix. No fed larvae died on C. cordifolia, so a 95% CI could not accurately be 

estimated  

 

Transition Hazard ratio 95% CI  

Empty to dead 0.268 0.013-5.207 

Empty to fed 0.512 0.381-0.689 

Fed to dead 7139.859 NA 
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Table D.3 Hierarchical simplification for linear mixed model (LMM) of relative gut 

fullness in the laboratory assay. Model fit was compared using Akaike’s information 

criterion (AIC) and Wald’s χ2 tests. χ2 test values indicate comparisons with the next 

largest model, usually directly above. Indented models were both compared back to the 

next largest model.  

 
Model Random 

effects 

AIC χ2 d.f. P-value 

Time (adj.)*host plant*population (1|family_ID) 

+ (1|larva_ID) 

-872.83 NA NA NA 

Time (adj.)*host plant + time (adj.)*population + 

host plant*population 

(1|family_ID) 

+ (1|larva_ID) 

-875.88 0.950 2 0.62 

Time (adj.)*host plant+ host plant*population (1|family_ID) 

+ (1|larva_ID) 

-877.67 2.208 2 0.33 

Time (adj.)*host plant + population (1|family_ID) 

+ (1|larva_ID) 

-877.60 2.063 1 0.15 

Time (adj.)*host plant (1|family_ID) 

+ (1|larva_ID) 

-878.46 1.144 1 0.29 

Time (adj.)*host plant (1|larva_ID) -878.63 1.831 1 0.18 

Time (adj.)*host plant NA -733.12 147.51 1 <0.001 
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Table D.4 Multiple comparison results of final linear mixed model (LMM) for relative 

gut fullness in the laboratory assay, comparing the effects of time (2, 4, and 6 h), host 

plant (Cc, Cardamine cordifolia; Ta, Thlaspi arvense) and population (GT, Gothic; QC, 

Quigley Creek). P-values were adjusted using the multivariate method for 15 tests, 

significance is indicated with asterisks 

 
Contrast Log odds ratio SE d.f. t-ratio P-value  

2-Cc vs. 4-Cc  -0.067 0.109 322.350 -6.107 <0.001 *** 

2-Cc vs. 6-Cc -0.082 0.012 328.630 -7.080 <0.001 *** 

2-Cc vs. 2-Ta 0.228 0.018 302.190 12.801 <0.001 *** 

2-Cc vs. 4-Ta 0.175 0.018 313.560 9.655 <0.001 *** 

2-Cc vs. 6-Ta 0.106 0.019 333.410 5.745 <0.001 *** 

4-Cc vs. 6-Cc -0.015 0.012 324.180 -1.330 0.75  

4-Cc vs. 2-Ta 0.295 0.018 307.390 16.419 <0.001 *** 

4-Cc vs. 4-Ta 0.241 0.018 318.580 13.241 <0.001 *** 

4-Cc vs. 6-Ta 0.173 0.019 338.140 9.279 <0.001 *** 

6-Cc vs. 2-Ta 0.310 0.018 327.900 16.880 <0.001 *** 

6-Cc vs. 4-Ta 0.257 0.019 338.440 13.772 <0.001 *** 

6-Cc vs. 6-Ta 0.188 0.019 356.930 9.891 <0.001 *** 

2-Ta vs. 4-Ta -0.053 0.012 326.000 -4.348 <0.001 *** 

2-Ta vs. 6-Ta -0.122 0.013 330.690 -9.449 <0.001 *** 

4-Ta vs. 6-Ta -0.068 0.013 322.760 -5.266 <0.001 *** 
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Table D.5 Hierarchical simplification of multinomial generalized linear model (GLM) 

of larval feeding in the laboratory and field assays. Wald’s χ2 values indicate 

comparisons with the next largest model. The final model is indicated in bold 

 
Fixed effects AIC χ2 d.f. P-value 

Assay*host plant*population 648.74 NA NA NA 

Assay*host plant + assay*population + host plant*population 644.85 0.108 2 0.95 

Assay*host plant + assay*population 641.00 0.149 2 0.93 

Assay*host plant + population 639.58 2.587 2 0.27 
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Table D.6 Hierarchical simplification for binomial mixed models of relative gut 

fullness between the 4-h timepoint in the field and laboratory. χ2 test values indicate 

comparisons with the next largest model, usually directly above. Indented models were 

both compared back to the next largest model.  

 
Fixed effects Random effects AIC χ2 d.f. P 

Assay*host plant*population (1|family_ID) -400.94 NA NA NA 

Assay*host plant + assay*population + 

host plant*population 

(1|family_ID) -405.95 0.951 1 0.33 

Assay*host plant + assay*population (1|family_ID) -412.95 0.340 1 0.56 

Assay*host plant + population (1|family_ID) -419.76 0.401 1 0.53 

Assay*host plant (1|family_ID) -426.73 0.723 1 0.40 

Assay*host plant NA -439.17 10.432 2 0.001 
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Table D.7 Multiple comparison results of final linear mixed model (LMM) for relative 

gut fullness between the laboratory and field after 4 h, comparing the effects of 

population (GT, Gothic; QC, Quigley Creek) and host plant (Cc, Cardamine cordifolia; 

Ta, Thlaspi arvense). P-values were adjusted using the multivariate method for six tests, 

significance is indicated with asterisks 

 
Contrast Estimate SE d.f. t-ratio P  

Lab-Cc vs. Field-Cc 0.157 0.019 385.578 8.436 <0.001 *** 

Lab-Cc vs. Lab-Ta 0.250 0.020 376.679 12.686 <0.001 *** 

Lab-Cc vs. Field-Ta 0.262 0.019 385.989 13.595 <0.001 *** 

Field-Cc vs. Lab-Ta 0.093 0.020 381.588 4.645 <0.001 *** 

Field-Cc vs. Field-Ta 0.105 0.018 373.964 5.782 <0.001 *** 

Lab-Ta vs. Field-Ta 0.012 0.021 383.773 0.590 0.94  
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Table D.8 Hierarchical simplification of multinomial generalized linear model (GLM) 

of larval feeding in the sinigrin assay. Wald’s χ2 values indicate comparisons with the 

next largest model.  

 

Fixed effects AIC χ2 d.f. P 

Timepoint*host plant*sinigrin addition 930.89 NA NA NA 

Timepoint*host plant + time*sinigrin addition + host plant*sinigrin 

addition 
915.78 0.882 8 0.99 

Timepoint*host plant + host plant*sinigrin addition 908.01 0.237 4 0.99 

Timepoint + host plant*sinigrin addition 896.60 4.591 8 0.80 
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Table D.9 Hazard ratios and 95% confidence intervals (95% CI) for transitioning from 

empty to fed and empty to dead for sinigrin- and water-treated leaves of Thlaspi 

arvense (Ta), Cardamine cordifolia (Cc) and Descurainia incana (Di). Hazard ratios 

were calculated over the entire assay period from a dataset excluding the single larva 

that died after feeding. 

 
Transition Treatment With respect to Hazard ratio 95% CI 

Empty to dead Ta + sinigrin Ta + water 1.859 0.393-8.797 

 Cc + water Ta + water 2.034 0.336-12.299 

 Cc + sinigrin Ta + water 1.050 0.140-7.844 

 Di + water Ta + water 1.10E-04 5.33E-90-2.27E+81 

 Di + sinigrin Ta + water 4.67E+04 2.25E-81-9.66E+89 

 Cc + water Ta + sinigrin 0.952 0.127-7.108 

 Cc + sinigrin Ta + sinigrin 2.135 0.869-5.242 

 Di + water Ta + sinigrin 2.22E-05 3.14E-89-1.56E+79 

 Di + sinigrin Ta + sinigrin 5.135 1.905-13.845 

 Cc + sinigrin Cc + water 1.951 0.544-6.991 

 Di + water Cc + water 4.48E-05 8.23E-99-2.44E+89 

 Di + sinigrin Cc + water 5.37 E+04 9.84E-90-2.93E+98 

 Di + water Cc + sinigrin 1.24E-05 1.4E-120-1.1E+110 

 Di + sinigrin Cc + sinigrin 2.406 0.969-5.971 

 Di + sinigrin Di + water 2.90E+04 1.41E-45-5.94E+53 

Empty to Fed Ta + sinigrin Ta + water 0.379 0.393-8.797 

 Cc + water Ta + water 1.599 0.336-12.299 

 Cc + sinigrin Ta + water 0.989 0.140-7.844 

 Di + water Ta + water 2.607 5.33E-90 –2.27E+81 

 Di + sinigrin Ta + water 2.334 2.25E-81-9.66E+89 

 Cc + water Ta + sinigrin 1.012 0.421-2.430 

 Cc + sinigrin Ta + sinigrin 1.581 0.832-3.005 

 Di + water Ta + sinigrin 0.428 0.171-1.075 

 Di + sinigrin Ta + sinigrin 6.086 3.111-11.904 

 Cc + sinigrin Cc + water 0.375 0.204-0.688 

 Di + water Cc + water 1.630 0.878-3.026 

 Di + sinigrin Cc + water 2.361 0.958-5.822 

 Di + water Cc + sinigrin 0.424 0.172-1.044 

 Di + sinigrin Cc + sinigrin 3.849 1.995-7.425 

 Di + sinigrin Di + water 0.886 0.454-1.727 
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Table D.10 Hierarchical simplification for linear models of relative gut fullness in the 

sinigrin assay. χ2 test values indicate comparisons with the next largest model, usually 

directly above. Indented models were both compared back to the next largest model. 

The final model is indicated in bold. 

 
Model Random effects AIC χ2 d.f. P 

Time*host plant*sinigrin addition  (1|larva_ID) + 

(1|family_ID) 

-304.8 NA NA NA 

Time*host plant + time*sinigrin addition + host 

plant*sinigrin addition 

(1|larva_ID) + 

(1|family_ID) 

-365.4 1.734 4 0.79 

Time*host plant + host plant*sinigrin addition (1|larva_ID) + 

(1|family_ID) 

-36 1.701 2 0.43 

Time + host plant*sinigrin addition (1|larva_ID) + 

(1|family_ID) 

-365.4 6.514 4 0.16 

Time + host plant*sinigrin addition (1|larva_ID)  362.2 5.200 1 0.023 

Time + host plant*sinigrin addition (1|family_ID) -342.3 23.392 1 <0.001 
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Table D.11 Multiple comparison results of final linear mixed model (LMM) for relative 

gut fullness in the sinigrin assay, comparing the effects of sinigrin addition (sin; 

control: con, water) and host plant (Cc, Cardamine cordifolia; Ta, Thlaspi arvense; Di, 

Descurainia incana). Results are given on the log odds ratio and P-values were adjusted 

using the multivariate method for 153 tests 

 
Contrast Log odds ratio SE df t-ratio P  

2-Sin-Ta vs. 4-Sin-Ta -0.068 0.014 230.250 -4.769 <0.001 *** 

2-Sin-Ta vs. 6-Sin-Ta -0.097 0.015 236.029 -6.515 <0.001 *** 

2-Sin-Ta vs. 2-Con-Ta 0.030 0.037 135.754 0.804 0.995  

2-Sin-Ta vs. 4-Con-Ta -0.038 0.039 167.134 -0.972 0.986  

2-Sin-Ta vs. 6-Con-Ta -0.067 0.039 169.413 -1.722 0.748  

2-Sin-Ta vs. 2-Sin-Cc -0.082 0.038 131.210 -2.174 0.463  

2-Sin-Ta vs. 4-Sin-Cc -0.150 0.040 161.165 -3.765 0.010 * 

2-Sin-Ta vs. 6-Sin-Cc -0.180 0.040 164.584 -4.468 0.001 ** 

2-Sin-Ta vs. 2-Con-Cc -0.207 0.036 134.255 -5.822 <0.001 *** 

2-Sin-Ta vs. 4-Con-Cc -0.274 0.037 167.531 -7.337 <0.001 *** 

2-Sin-Ta vs. 6-Con-Cc -0.304 0.038 168.029 -8.107 <0.001 *** 

2-Sin-Ta vs. 2-Sin-Di -0.150 0.036 136.927 -4.148 0.003 ** 

2-Sin-Ta vs. 4-Sin-Di -0.217 0.038 169.604 -5.729 <0.001 *** 

2-Sin-Ta vs. 6-Sin-Di -0.247 0.038 170.411 -6.487 <0.001 *** 

2-Sin-Ta vs. 2-Con-Di -0.255 0.035 134.480 -7.248 <0.001 *** 

2-Sin-Ta vs. 4-Con-Di -0.323 0.037 169.154 -8.676 <0.001 *** 

2-Sin-Ta vs. 6-Con-Di -0.353 0.037 169.018 -9.458 <0.001 *** 

4-Sin-Ta vs. 6-Sin-Ta -0.030 0.015 229.442 -1.958 0.602  

4-Sin-Ta vs. 2-Con-Ta 0.097 0.040 182.207 2.415 0.319  

4-Sin-Ta vs. 4-Con-Ta 0.030 0.037 135.754 0.804 0.995  

4-Sin-Ta vs. 6-Con-Ta <0.001 0.040 178.782 0.004 1.000  

4-Sin-Ta vs. 2-Sin-Cc -0.015 0.041 173.463 -0.360 1.000  

4-Sin-Ta vs. 4-Sin-Cc -0.082 0.038 131.210 -2.174 0.463  

4-Sin-Ta vs. 6-Sin-Cc -0.112 0.041 172.354 -2.739 0.171  

4-Sin-Ta vs. 2-Con-Cc -0.139 0.039 184.934 -3.564 0.020 * 

4-Sin-Ta vs. 4-Con-Cc -0.207 0.036 134.255 -5.822 <0.001 *** 

4-Sin-Ta vs. 6-Con-Cc -0.236 0.038 178.802 -6.154 <0.001 *** 

4-Sin-Ta vs. 2-Sin-Di -0.082 0.040 186.947 -2.072 0.528  

4-Sin-Ta vs. 4-Sin-Di -0.150 0.036 136.927 -4.148 0.003 ** 

4-Sin-Ta vs. 6-Sin-Di -0.179 0.039 181.117 -4.600 0.001 ** 

4-Sin-Ta vs. 2-Con-Di -0.188 0.039 185.056 -4.850 <0.001 *** 

4-Sin-Ta vs. 4-Con-Di -0.255 0.035 134.480 -7.248 <0.001 *** 

4-Sin-Ta vs. 6-Con-Di -0.285 0.038 179.050 -7.478 <0.001 *** 

6-Sin-Ta vs. 2-Con-Ta 0.127 0.041 186.922 3.125 0.069 • 

6-Sin-Ta vs. 4-Con-Ta 0.059 0.040 181.381 1.483 0.866  

6-Sin-Ta vs. 6-Con-Ta 0.030 0.037 135.754 0.804 0.995  

6-Sin-Ta vs. 2-Sin-Cc 0.015 0.041 176.662 0.359 1.000  

6-Sin-Ta vs. 4-Sin-Cc -0.053 0.041 172.274 -1.296 0.930  

6-Sin-Ta vs. 6-Sin-Cc -0.082 0.038 131.210 -2.174 0.463  

6-Sin-Ta vs. 2-Con-Cc -0.110 0.040 191.863 -2.774 0.158  

6-Sin-Ta vs. 4-Con-Cc -0.177 0.039 185.475 -4.569 0.001 ** 

6-Sin-Ta vs. 6-Con-Cc -0.207 0.036 134.255 -5.822 <0.001 *** 

6-Sin-Ta vs. 2-Sin-Di -0.052 0.040 193.461 -1.310 0.927  

6-Sin-Ta vs. 4-Sin-Di -0.120 0.039 187.064 -3.057 0.081 • 

6-Sin-Ta vs. 6-Sin-Di -0.150 0.036 136.927 -4.148 0.003 ** 

6-Sin-Ta vs. 2-Con-Di -0.158 0.039 192.681 -4.033 0.004 ** 

6-Sin-Ta vs. 4-Con-Di -0.226 0.039 187.033 -5.854 <0.001 *** 

6-Sin-Ta vs. 6-Con-Di -0.255 0.035 134.480 -7.248 <0.001 *** 
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2-Con-Ta vs. 4-Con-Ta -0.068 0.014 230.250 -4.769 <0.001 *** 

2-Con-Ta vs. 6-Con-Ta -0.097 0.015 236.029 -6.515 <0.001 *** 

2-Con-Ta vs. 2-Sin-Cc -0.112 0.035 111.294 -3.246 0.052 • 

2-Con-Ta vs. 4-Sin-Cc -0.180 0.037 151.614 -4.806 <0.001 *** 

2-Con-Ta vs. 6-Sin-Cc -0.209 0.038 156.769 -5.536 <0.001 *** 

2-Con-Ta vs. 2-Con-Cc -0.237 0.031 99.422 -7.654 <0.001 *** 

2-Con-Ta vs. 4-Con-Cc -0.304 0.034 143.794 -8.982 <0.001 *** 

2-Con-Ta vs. 6-Con-Cc -0.334 0.034 145.885 -9.813 <0.001 *** 

2-Con-Ta vs. 2-Sin-Di -0.179 0.031 100.238 -5.726 <0.001 *** 

2-Con-Ta vs. 4-Sin-Di -0.247 0.034 143.516 -7.213 <0.001 *** 

2-Con-Ta vs. 6-Sin-Di -0.276 0.034 145.732 -8.034 <0.001 *** 

2-Con-Ta vs. 2-Con-Di -0.285 0.031 101.480 -9.234 <0.001 *** 

2-Con-Ta vs. 4-Con-Di -0.353 0.034 147.593 -10.392 <0.001 *** 

2-Con-Ta vs. 6-Con-Di -0.382 0.034 149.067 -11.230 <0.001 *** 

4-Con-Ta vs. 6-Con-Ta -0.030 0.015 229.442 -1.958 0.602  

4-Con-Ta vs. 2-Sin-Cc -0.045 0.037 149.236 -1.194 0.955  

4-Con-Ta vs. 4-Sin-Cc -0.112 0.035 111.294 -3.246 0.053 • 

4-Con-Ta vs. 6-Sin-Cc -0.142 0.038 157.347 -3.746 0.011 * 

4-Con-Ta vs. 2-Con-Cc -0.169 0.034 144.951 -4.949 <0.001 *** 

4-Con-Ta vs. 4-Con-Cc -0.237 0.031 99.422 -7.654 <0.001 *** 

4-Con-Ta vs. 6-Con-Cc -0.266 0.034 148.481 -7.774 <0.001 *** 

4-Con-Ta vs. 2-Sin-Di -0.112 0.035 145.116 -3.236 0.052 • 

4-Con-Ta vs. 4-Sin-Di -0.179 0.031 100.238 -5.726 <0.001 *** 

4-Con-Ta vs. 6-Sin-Di -0.209 0.035 148.503 -6.030 <0.001 *** 

4-Con-Ta vs. 2-Con-Di -0.217 0.034 146.874 -6.396 <0.001 *** 

4-Con-Ta vs. 4-Con-Di -0.285 0.031 101.480 -9.234 <0.001 *** 

4-Con-Ta vs. 6-Con-Di -0.315 0.034 150.764 -9.213 <0.001 *** 

6-Con-Ta vs. 2-Sin-Cc -0.015 0.037 151.402 -0.398 1.000  

6-Con-Ta vs. 4-Sin-Cc -0.083 0.038 154.376 -2.196 0.448  

6-Con-Ta vs. 6-Sin-Cc -0.112 0.035 111.294 -3.246 0.053 • 

6-Con-Ta vs. 2-Con-Cc -0.139 0.035 151.342 -4.026 0.004 ** 

6-Con-Ta vs. 4-Con-Cc -0.207 0.035 152.846 -5.987 <0.001 *** 

6-Con-Ta vs. 6-Con-Cc -0.237 0.031 99.422 -7.654 <0.001 *** 

6-Con-Ta vs. 2-Sin-Di -0.082 0.035 151.237 -2.349 0.357  

6-Con-Ta vs. 4-Sin-Di -0.150 0.035 152.474 -4.290 0.002 ** 

6-Con-Ta vs. 6-Sin-Di -0.179 0.031 100.238 -5.726 <0.001 *** 

6-Con-Ta vs. 2-Con-Di -0.188 0.035 153.997 -5.441 <0.001 *** 

6-Con-Ta vs. 4-Con-Di -0.255 0.035 156.446 -7.387 <0.001 *** 

6-Con-Ta vs. 6-Con-Di -0.285 0.031 101.480 -9.234 <0.001 *** 

2-Sin-Cc vs. 4-Sin-Cc -0.068 0.014 230.250 -4.769 <0.001 *** 

2-Sin-Cc vs. 6-Sin-Cc -0.097 0.015 236.029 -6.515 <0.001 *** 

2-Sin-Cc vs. 2-Con-Cc -0.125 0.033 106.963 -3.797 0.011 * 

2-Sin-Cc vs. 4-Con-Cc -0.192 0.036 147.309 -5.407 <0.001 *** 

2-Sin-Cc vs. 6-Con-Cc -0.222 0.036 147.621 -6.238 <0.001 *** 

2-Sin-Cc vs. 2-Sin-Di -0.067 0.033 108.539 -2.022 0.562  

2-Sin-Cc vs. 4-Sin-Di -0.135 0.036 148.100 -3.751 0.011 * 

2-Sin-Cc vs. 6-Sin-Di -0.164 0.036 148.585 -4.569 0.001 ** 

2-Sin-Cc vs. 2-Con-Di -0.173 0.033 107.607 -5.311 <0.001 *** 

2-Sin-Cc vs. 4-Con-Di -0.241 0.035 149.514 -6.791 <0.001 *** 

2-Sin-Cc vs. 6-Con-Di -0.270 0.035 149.250 -7.634 <0.001 *** 

4-Sin-Cc vs. 6-Sin-Cc -0.030 0.015 229.442 -1.958 0.602  

4-Sin-Cc vs. 2-Con-Cc -0.057 0.036 151.096 -1.584 0.820  

4-Sin-Cc vs. 4-Con-Cc -0.125 0.033 106.963 -3.797 0.011 * 

4-Sin-Cc vs. 6-Con-Cc -0.154 0.036 151.441 -4.303 0.002 ** 

4-Sin-Cc vs. 2-Sin-Di <0.001 0.036 152.180 0.011 1.000  

4-Sin-Cc vs. 4-Sin-Di -0.067 0.033 108.539 -2.022 0.562  
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4-Sin-Cc vs. 6-Sin-Di -0.097 0.036 152.520 -2.669 0.199  

4-Sin-Cc vs. 2-Con-Di -0.105 0.036 151.602 -2.959 0.105  

4-Sin-Cc vs. 4-Con-Di -0.173 0.033 107.607 -5.311 <0.001 *** 

4-Sin-Cc vs. 6-Con-Di -0.203 0.036 152.244 -5.696 <0.001 *** 

6-Sin-Cc vs. 2-Con-Cc -0.027 0.037 158.647 -0.748 0.997  

6-Sin-Cc vs. 4-Con-Cc -0.095 0.036 158.712 -2.608 0.225  

6-Sin-Cc vs. 6-Con-Cc -0.125 0.033 106.963 -3.797 0.011 * 

6-Sin-Cc vs. 2-Sin-Di 0.030 0.037 159.454 0.813 0.995  

6-Sin-Cc vs. 4-Sin-Di -0.038 0.037 159.347 -1.023 0.981  

6-Sin-Cc vs. 6-Sin-Di -0.067 0.033 108.539 -2.022 0.562  

6-Sin-Cc vs. 2-Con-Di -0.076 0.036 159.865 -2.091 0.516  

6-Sin-Cc vs. 4-Con-Di -0.143 0.036 160.775 -3.957 0.005 ** 

6-Sin-Cc vs. 6-Con-Di -0.173 0.033 107.607 -5.311 <0.001 *** 

2-Con-Cc vs. 4-Con-Cc -0.068 0.014 230.250 -4.769 <0.001 *** 

2-Con-Cc vs. 6-Con-Cc -0.097 0.015 236.029 -6.515 <0.001 *** 

2-Con-Cc vs. 2-Sin-Di 0.057 0.030 96.329 1.940 0.614  

2-Con-Cc vs. 4-Sin-Di -0.010 0.033 144.538 -0.314 1.000  

2-Con-Cc vs. 6-Sin-Di -0.040 0.033 149.320 -1.204 0.952  

2-Con-Cc vs. 2-Con-Di -0.048 0.029 97.819 -1.666 0.778  

2-Con-Cc vs. 4-Con-Di -0.116 0.032 149.468 -3.575 0.019 * 

2-Con-Cc vs. 6-Con-Di -0.146 0.033 153.539 -4.447 0.001 ** 

4-Con-Cc vs. 6-Con-Cc -0.030 0.015 229.442 -1.958 0.602  

4-Con-Cc vs. 2-Sin-Di 0.125 0.033 145.032 3.812 0.009 ** 

4-Con-Cc vs. 4-Sin-Di 0.057 0.030 96.329 1.940 0.614  

4-Con-Cc vs. 6-Sin-Di 0.028 0.033 151.763 0.834 0.994  

4-Con-Cc vs. 2-Con-Di 0.019 0.032 147.388 0.593 0.999  

4-Con-Cc vs. 4-Con-Di -0.048 0.029 97.819 -1.666 0.778  

4-Con-Cc vs. 6-Con-Di -0.078 0.033 154.822 -2.385 0.335  

6-Con-Cc vs. 2-Sin-Di 0.154 0.033 149.464 4.674 <0.001 *** 

6-Con-Cc vs. 4-Sin-Di 0.087 0.033 151.420 2.623 0.219  

6-Con-Cc vs. 6-Sin-Di 0.057 0.030 96.329 1.940 0.615  

6-Con-Cc vs. 2-Con-Di 0.049 0.033 152.902 1.493 0.862  

6-Con-Cc vs. 4-Con-Di -0.019 0.033 156.226 -0.575 0.999  

6-Con-Cc vs. 6-Con-Di -0.048 0.029 97.819 -1.666 0.778  

2-Sin-Di vs. 4-Sin-Di -0.068 0.014 230.250 -4.769 <0.001 *** 

2-Sin-Di vs. 6-Sin-Di -0.097 0.015 236.029 -6.515 <0.001 *** 

2-Sin-Di vs. 2-Con-Di -0.106 0.029 96.739 -3.599 0.020 * 

2-Sin-Di vs. 4-Con-Di -0.173 0.033 146.973 -5.294 <0.001 *** 

2-Sin-Di vs. 6-Con-Di -0.203 0.033 150.759 -6.152 <0.001 *** 

4-Sin-Di vs. 6-Sin-Di -0.030 0.015 229.442 -1.958 0.602  

4-Sin-Di vs. 2-Con-Di -0.038 0.033 144.452 -1.174 0.958  

4-Sin-Di vs. 4-Con-Di -0.106 0.029 96.739 -3.599 0.020 * 

4-Sin-Di vs. 6-Con-Di -0.135 0.033 151.733 -4.107 0.003 ** 

6-Sin-Di vs. 2-Con-Di -0.009 0.033 149.971 -0.261 1.000  

6-Sin-Di vs. 4-Con-Di -0.076 0.033 153.423 -2.299 0.386  

6-Sin-Di vs. 6-Con-Di -0.106 0.029 96.739 -3.599 0.021 * 

2-Con-Di vs. 4-Con-Di -0.068 0.014 230.250 -4.769 <0.001 *** 

2-Con-Di vs. 6-Con-Di -0.097 0.015 236.029 -6.515 <0.001 *** 

4-Con-Di vs. 6-Con-Di -0.030 0.015 229.442 -1.958 0.602  
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Table D.12 Hierarchical simplification for cox mixed effects proportional hazards 

models of larval survival. χ2 test values indicate comparisons with the next largest 

model- usually directly above. Indented models were both compared back to the next 

largest model. The final model is indicated in bold. 
 

Model Random effects AIC χ2 df P 

Host plant*sinigrin addition  (1|family_ID) 1455.8 NA NA NA 

Host plant + sinigrin addition (1|family_ID) 1454.3 2.522 2 0.28 

Host plant*sinigrin addition NA 1475.0 11.107 1 <0.001 
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Table D.13 Multiple comparison (Tukey contrasts) of final cox mixed effects 

proportional hazards models of larval survival, comparing the effects of sinigrin 

addition (sin; control: con, water) and host plant (Cc, Cardamine cordifolia; Ta, Thlaspi 

arvense; Di, Descurainia incana). P-values were adjusted for 15 tests. 
 

Contrast Estimate SE z P 
 

Con-Di vs. Con-Cc -0.424 0.339 -1.251 0.809 
 

Con-Ta vs. Con-Cc 1.081 0.300 3.602 0.004 ** 

Sin-Cc vs. Con-Cc 0.977 0.287 3.403 0.008 ** 

Sin-Di vs. Con-Cc 0.409 0.295 1.386 0.733 
 

Sin-Ta vs. Con-Cc 1.478 0.289 5.119 <0.001 *** 

Con-Ta vs. Con-Di 1.505 0.335 4.492 <0.001 *** 

Sin-Cc vs. Con-Di 1.402 0.322 4.355 <0.001 *** 

Sin-Di vs. Con-Di 0.833 0.328 2.539 0.111 
 

Sin-Ta vs. Con-Di 1.903 0.325 5.850 <0.001 *** 

Sin-Cc vs. Con-Ta -0.104 0.274 -0.378 0.999 
 

Sin-Di vs. Con-Ta -0.672 0.286 -2.351 0.172 
 

Sin-Ta vs. Con-Ta 0.397 0.263 1.509 0.655 
 

Sin-Di vs. Sin-Cc -0.569 0.272 -2.088 0.291 
 

Sin-Ta vs. Sin-Cc 0.501 0.252 1.984 0.348 
 

Sin-Ta vs. Sin-Di 1.070 0.272 3.932 0.001 ** 

 



www.manaraa.com

 

183 

D.2 Figures 

 

 
 

Figure D.1 Leaf area consumed (cm2) over the 6 h of the laboratory feeding assay. 

Boxes represent the interquartile range (IQR) with a horizontal line at the median and 

whiskers extending to the largest or smallest observation falling within 1.5 IQRs of the 

upper or lower quantiles, respectively. Outliers appear as black points. There was no 

main effect of population (rank normalization transformed ANOVA:  F1,152 = 0.032, P = 

0.86). The difference in leaf area change between the two host plants was nearly 

significant (F1,152 = 3.015, P = 0.082). 
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Figure D.2 Leaf area consumed (cm2) over the first 6 h of the sinigrin feeding assay. 

Boxes represent the interquartile range (IQR) with a horizontal line at the median and 

whiskers extending to the largest or smallest observation falling within 1.5 IQR-lengths 

of the upper or lower quantiles, respectively. Outliers appear as black points. The 

interaction between host plant and sinigrin addition was not significant (rank 

normalization transformed ANOVA, F2,103 = 0.671, P = 0.51). There was neither a 

significant main effect of host plant (F2,103= 1.120, P = 0.33), nor of sinigrin addition 

(F1,103 = 0.061, P = 0.81).   
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